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DEFINITION AND APPLICATION OF LONGITUDINAL STABILITY
DERIVATIVES FOR ELASTIC AIRPLANES

By William B, Kemp, Jr.
Langley Research Center

SUMMARY

A review of past practices in the analysis of longitudinal stability of elastic air-
planes has revealed some inconsistencies arising from an inappropriate constraint on
airplane speed. These inconsistencies lead to ambiguous definitions of stability deriva-
tives and inaccurate prediction of some stability characteristics and, possibly, even per-
formance characteristics.

A single, consistent set of longitudinal stability derivatives for elastic airplanes is
defined in this paper. Unlike past practice, the aeroelastic contributions of dynamic-
pressure perturbations are included, and the aeroelastic contributions of normal acceler-
ation appear primarily in the derivatives with respect to pitching velocity and angle-of-
attack rate,

Approximate expressions for static stability and control parameters in terms of
these derivatives are shown to correlate well with results of more complete dynamic
solutions. Some results of an illustrative analysis cast doubt on the general existence of
a neutral point or maneuver point and indicate the possibility of a strongly divergent phu-
goid oscillation at relatively high frequency, particularly when the variation of atmo-
speric properties with altitude are considered. One commonly used alternative formula-~
tion of the stability derivatives is shown to yield significantly inaccurate predictions of
not only the speed stability and phugoid characteristics, but also the short-period fre-
quency and damping.

INTRODUCTION

The overall flight performance of many aircraft designs of current interest is
strongly influenced by the effects of elastic deformation of the aircraft structure under
the action of the flight loads. These aeroelastic effects are particularly important for
aircraft having large size, low structural design load factor, low structural weight frac-
tion, and high operating dynamic pressure. Aeroelastic effects are manifested not only
in the area of structural dynamics (flutter, landing loads, etc.) but also in the quasi-steady
areas of stability and control and trimmed flight performance.



Two different approaches are widely used for analysis of quasi-steady aeroelastic
effects: the modal technique and the influence-coefficient technique. As pointed out in
reference 1, both techniques can utilize the S_ame description of aerodynamic, elastic,
and mass properties but differ in the form of the perturbation variables whose effects
are superimposed to describe the structural deformation. In the modal technique, a rela-
tively complete dynamic formulation involving the normal modes of free vibration is
reduced to a quasi-steady formulation by assuming that the velocities and accelerations
in these vibration modes are negligible. The influence-coefficient technique applies
steady -state solutions for structural deformation to the relatively low frequency rigid-
body motions. Both techniques are developed in some depth in reference 2, which points
out that from either technique, the quasi-steady (termed "equivalent elastic' in ref. 2)
formulation embodies the implicit assumption that the structural deformation is in phase
with the applied loads and therefore the dynamic analysis requires no more degrees of
freedom than are needed for analysis of a rigid airplane. The quasi-steady effects of
é.eroelasticity are then represented completely by changes in the aerodynamic stability
derivatives and by new derivatives which are either nonexistent or negligible for a rigid
airplane. '

. A review of the procedures outlined in references 1, 2, and 3 for calculating the
longitudinal stability and control characteristics of elastic airplanes reveals some dis-
turbing inconsistencies. For example, in reference 1 the forward-speed degree of free-
dom is omitted from the basic dynamic formulation, yet a static stability parameter for
1g level flight is developed. This omission of the speed degree of freedom is believed
to be typical of many applications of the modal technique. In reference 2, aerodynamic
derivatives with respect to dynamic pressure are included in the expression for longitu-
dinal static speed stability but are omitted in the dynamic stability analysis. Moreover,
all the derivatives recommended for use in the dynamic analysis are derived under a
constraint which is valid only at constant dynamic pressure. Reference 3 makes use of
the same constraint but suggests the use of two neutral-~point locations, one applicable to
constant-speed maneuvers and the other applicable to constant-load-factor maneuvers.
These inconsistencies can lead to errors not only in the predicted stability and control
characteristics, but also in the predicted trimmed drag coefficient through use of inap-
propriate aerodynamic derivatives related to lift-curve slope and static stability.

When it is considered that meaningful indices of static stability during perturbations
in either speed or load factor can be obtained from control response transfer functions
resulting from a single solution of the dynamic longitudinal equations of motion, it is
apparent that a single set of aerodynamic stability derivatives must exist for a given flight
condition. These stability derivatives are then applicable, within the limitations of linear
dynamic analysis and the quasi-steady aeroelastic assumptions, to the prediction of all the
pertinent static and dynamic stability and control characteristics as well as aerodynamic
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performance characteristics. In this paper, an attempt to define such a set of derivatives
is described and the significance of certain of the derivatives to the longitudinal stability
and control problem is examined by means of illustrative calculations.

SYMBOLS
a aerodynamic operator
[A] aerodynamic influence-coefficient matrix
a velocity of sound, meters/second
(B] aeroelastic correction matrix
|:B(-1 matrix used in calculating dynamic-pressure contributions to stability
derivatives

I:BmAm:\ matrix used in calculating Mach number contributions to stability derivatives

b reference span, meters
Fx,A
Ca axial-force coefficient, --é(’—s
Cp drag coefficient, %E
CL lift coefficient, I‘L;ft
gs
C - . Y,A
m pitching-~moment coefficient, 35¢
c . Fz A
N normal-force coefficient, “ES
F
Cx local X-force coefficient, %—
(4
o Fza
Cg local Z-force coefficient, —g—
qSl
c reference chord, meters
F force, newtons



Fyx,Fy,Fy  force components along reference axes, newtons

g gravity acceleration, meters/second2

go gravity acceleration at sea level, meters/second2
H angular momentum, kilogram-meters2/second

h altitude, meters

T inertia dyadic

Ix, Iy, 1z moments of inertia about reference axes, kilogram-meters2

Ixz product of inertia about X- and Z-axes, kilogram—meters2
1,7,k unit vectors along reference axes
M +M
M Mach number; or Y’AI Y’T, 1 /second2
Y

My, My, M7z moment components about reference axes, newton-meters
m mass, kilograms; or any motion variable

n. component of combined kinetic and gravity acceleration in negative
Z-direction, normalized by g,

p,q,T angular velocities about reference axes, radians/second
p any physical variable

- sz

q dynamic pressure, 5 newtons/meter?2

R Reynolds number, ‘%

S reference wing area, meters?

5 local panel area, meters?2



] structural operator
s structural slope influence-coefficient matrix
s Laplace variable
T displacement of propulsive thrust control
t time, seconds
u,v,w velocity components along reference axes, meters/second
a normalized velocity perturbation, V‘—erl
\'4 velocity, meters/second
w airplane weight, newtons
XY, 7Z orthogonal reference axes
X = f&?n:fl—ﬂz’ 1/second
X,¥,2 coordinates relative to reference axes, meters
% distance behind leading edge of reference chord, fraction of reference chord
Z = EEA—-l-—F‘Z—’T, 1/second
mVy
a angle of attack, radians
B angle of sideslip, radians
) angular displacement of aerodynamic control surface, radians
€ local slope of mean camber surface, -g—;
€5 weighted value of mean-camber ~surface élope used to represent unit &
o damping ratio of phugoid mode



Csp damping ratio of short-period mode
0, ¢, Euler attitude angles in pitch, roll, and yaw, respectively, taken in order
of Y,6,¢ from earth reference to airplane reference, radians
U air viscosity, nev#’ton-seconds/meter2
p air density, kilograms/meter3
o induced downwash angle used as boundary condition, radians
w angular velocity, .radians/second; or circular frequency, radians/second
Wp undamped natural frequency of phugoid mode, radians/second
@Wgp undamped natural frequency of short-period mode, radians/second
Su.bscripts:
A from aerodynamic sources
a value at aerodynamic control point
c.g. value at center of gravity
des value at airplane design condition
F incremeﬁt due to flexibility
f value at force application point
I from inertial sources
ij,k index indicating a member of a set
jig value corresponding to jig shape
l local value



P perturbation from reference flight condition

S steady state

s referred to stability axes

T from propulsive sources

U unsteady

1 value at reference flight condition

Mathematical notation:

) derivative with respect to time
(M) second derivative with respect to time
(™) vector quantity
{ } column matrix
T
< } row matrix
[ ] matrix
[ ;] diagonal matrix

Stability derivative notation:
Any of the following variables:
8,a, &, e,q,q,ﬁ,ﬁ, T,h
when used as a subscript on any of the following quantities:
X,Z,M,CA,CN,Cim

denotes the stability derivative of the indicated quantity with respect to the indicated
variable.



DEVELOPMENT OF FORMULATION

Fundamental Assumptions

As indicated in the introduction, it is desired to define a self-consistent set of aero-
dynamic stability derivatives applicable to the calculation of the longitudinal static and
dynamic stability and control and trimmed flight characteristics of an elastic airplane.
These derivatives will be defined in the context of their role as constant coefficients in
the dynamic equations of airplane motion. Since the aerodynamic processes involved are
not necessarily linear with the motion variables, the concept of local linearization will be
used so that the aerodynamic derivatives can be considered constant for small motion
perturbations from a reference flight condition. The linearized small-perturbation equa-
tions of motion then constitute an appropriate form for use of the derivatives.

The basic assumption of quasi-steady aeroelasticity will be made, namely, the
structural deflection is assumed to be in phase with the applied loads. This assumption
is equivalent to ignoring the velocities and accelerations in the elastic degrees of free-
dom. One result of this assumption, stated in reference 2, is that the set of equations of
motion is reduced to include only those governing motion of the airplane center of gravity
(abbreviated c.g.). The quasi-steady aeroelastic effects are then embodied completely
in the aerodynamic characteristics, and the equations of motion are otherwise identical
to those for a rigid airplane. The related assumption that the aerodynamic load change
arising from structural deformation is in phase with the structural deflection is also
made. In other words, the unsteady aerodynamic effects related to structural deforma-
tion are neglected. However, this does not preclude the existence of aerodynamic deriva-
tives with respect to the rate of change of angle of attack.

Although use of the quasi-steady assumptions clearly introduces no error in the
prediction of steady-state flight characteristics, some inaccuracy can occur in the char-
acteristic stability (rigid body) modes because dynamic coupling between these modes and
the elastic modes of structural vibration is neglected. This coupling can become increas-
ingly significant as the frequency of any structural mode approaches that of any rigid-body
mode. In spite of the possible inaccuracy, the quasi-steady assumptions are frequently
made, particularly in preliminary aircraft design studies, because of the simplified
dynamic formulation that results from their use.

To describe the elastic properties of the airplane structure, a structural reference
plane is assumed to exist and to be oriented in such a way that the in-plane flexibility is
negligible relative to that normal to the reference plane. Furthermore, the longitudinal
aerodynamic characteristics are assumed to be unaffected by elastic distortion of either
vertical fins or fuselage cross sections. All remaining structural deflections are con-
strained to the direction normal to a single plane chosen to lie as nearly as possible

8



parallel to the mean camber surfaces of the wing, body, and horizontal tail. It is appro-
priate, then, to choose an orthogonal system of reference coordinate axes, as shown in fig-
~ ure 1, so that the Z-axis is parallel to the direction of allowed structural deflections and
the X-axis lies in the plane of symmetry. For small perturbations from the deflections
existing in a reference flight condition, the center-of-gravity location, the pitching moment
of inertia, and the aerodynamic and structural influence coefficients can be considered to
be constant. In practice, these quantities, determined for a given reference condition,

are frequently used over a set of flight conditions to be analyzed.

Formulation of Stability Derivatives

In airplane longitudinal stability analysis, one is concerned with the motion of the

airplane as a whole in three degrees of freedom, including two components of translational

freedom and one of pitch rotation. An additional degree of freedom exists for each inde-
pendent control system. In the present development, two such control systems will be
assumed, one aerodynamic and one propulsive, having control displacements denoted by
8 and T, respectively. The conditions for dynamic equilibrium in the three airplane
degrees of freedom are

Fxa+Fxop+Fxi=0 (1a)
FZ,A+FZ,T+FZ,I= 0 (lb)
My A +My T +My1=0 (1c)

where the nine force and moment components may vary with time. Conditions for dynamic
equilibrium in the two control degrees of freedom are assumed to exist and be satisfied
although they will not be specified.

Equations of motion are formed from the equilibrium equations when the forces and
moments are expressed as functions of a set of motion variables. The fundamental set of
motion variables consists of the displacement and its successive time derivatives in each
degree of freedom. Alternative sets of motion variables can be derived from the funda-
mental set by transformation. The total number of motion variables is somewhat arbi-
trary and depends on the maximum and minimum order of differentiation of each displace-~
ment needed to express the forces and moments with sufficient accuracy for the problem
at hand. Second derivatives of the airplane displacements are needed to define the inertial
contributions and are believed to be of sufficiently high order to describe the aerodynamic
and propulsive contributions at frequencies compatible with the quasi-steady assumption
made in the present problem. At the low-order end, one or more of the displacements
themselves may be omitted from the set of motion variables. Under the frequently made

9



assumption of a uniform atmosphere, the forces and moments do not depend on the loca-
tion of the airplane, and even if atmospheric variations with altitude are considered, the
horizontal displacement is of no significance.

Alternative sets of motion variables can be derived by transformation from the
fundamental set. Common practice in the analysis of longitudinal aircraft motions has
resulted in the use of variables such as (V,q, §) as the set of lowest order motion vari-
ables in the three airplane degrees of freedom. These variables must be supplemented
by the control displacements 6 and T for the five-degree-of-freedom problem at
hand. These five variables and their time derivatives constitute an appropriate set of
motion variables only if a locally uniform atmosphere is assumed. If the variation of
atmospheric properties with-altitude is to participate in the dynamic problem, a more
appropriate set will be (V,h,a,0,5,T), but because these variables are not mutually inde-
pendent, the equations of motion must include a kinematic equation relating h to vV, a,
and 4. This scheme is retained in the present development.

Common practice in dynamic stability analysis has led to the use of stability deriv-~
atives expressed in either coefficient form or a dimensional form having units of negative
powers of time. The coefficient form is usually applied only to aerodynamic forces and
moments, whereas the dimensional form includes both aerodynamic and thrust contribu-
tions. To define these derivatives, equations (1) may be restated as

Fx 1

-1 Sl o
X= mVy (FX’A + FX, T) mVl (2a)
F
_ 1 _ Z,1
2= o (Fz, A+ Fz,T> - (2b)
M
-1 . 11
M= IY<MYyA + MY,T) = IY (20)

Expressing X, Z, and M as functions of the motion variables and applying the prin-
ciple of linear superposition of small perturbations give

J
X(ml S T mJ> = X(ml,l TR mJ,l) + Z mp,j<§—1}§j> (3a)
=1 1
J
Z(ml S TR mJ) = Z(ml,l ceemyp. .. mJ,1> + Z mp,j<§sz> (3b)
=1 1
J
M(ml b oMy mJ)= M(ml,l . e mj,l .. mJ’l) + z de(%%) (3c)
=1 1

10



where mj 1 is the value of the jth motion variable in the reference flight condition and
mp, j is the perturbation of the jth motion variable from its reference value. The partial
derivatives appearing in equations (3) are defined as the complete set of stability deriva-
tives in dimensional form. The stability derivatives in coefficient form are similarly
defined as the partial derivatives of the coefficients Cp, CpN, and Cp, with respect to
motion perturbations where

F
Ca ='-—-&xé—A- (42)

Fgz A

55 (4D)

My A
= 4
Cm = —35¢ (4c)

In determining the values of the stability derivatives by theoretical, experimental, or
combined means, the set of motion variables is not necessarily the most appropriate set
for isolating and understanding all the contributions to the stability derivatives. A more
appropriate set might be those variables describing the physical processes involved in
the production of aerodynamic and propulsive loads. In general, any change in the shape
of an airplane surface will produce a change in the aerodynamic load distribution. There-
fore, any process capable of deforming the structure of an elastic airplane will contribute
to one or more stability derivatives. Conversely, for an elastic airplane, a change in
aerodynamic or thrust loading will, in general,-change the structural deformation. Con-
sequently, all stability derivatives reflect contributions from one or more processes
capable of deforming the structure. Therefore, a set of physical variables capable of
defining the structural deformation is a suitable set for determining the stability deriva-
tives of an elastic airplane.

If it is assumed that such a set of physical variables p, exists and that it can be
functionally related to the set of motion variables, then a stability derivative, X / amj
for example, can be expressed as

K 9
8X \ _ z X \ [Pk (5)
am; - Py 3m]-
1 k=1 1 1
The number of physical variables K need not equal the number of motion variables J

and the physical variables need not be mutually independent under the constraints of the
airplane dynamic problem.

Under the concept described, the distribution of structural deflection can be consid-
ered as the linear superposition of a number of deflection distributions, each identified

11



with a particular physical variable. For small perturbations from a given reference
flight condition, the shape of each distribution is invariant and its amplitude is propor-
tional to the perturbation of its physical variable,

An appropriate set of physical variables may now be determined. Consider an air-
plane configuration represented by a nearly planar mean camber surface divided into a
large number of elemental panels. In symmetric flight, the configuration shape is defined
for aerodynamic purposes by the paneling geometry and the set of chordwise slopes
{¢} = {-dz/ax} at all panets. The configuration is flying in an aerodynamic environ-
ment defined globally by Mach number, Reynolds number, and dynamic pressure, and
locally by the set of local angles of attack {a;} and angle-of-attack rates {& 1) act-
ing on each panel and arising from aircraft motion and induced effects of the propulsion
system. The sets of X- and Z-components of the aerodynamic force coefficients acting
on the panels can be expressed by

{Cx.a) = Ox s{o;+e) + Ax y (&) (62)

{CZ,A> = a’Z,S {al + E> + aZ,U{&Z> (Gb)

where (O represents an aerodynamic operator dependent on paneling geometry, Mach .
number, and Reynolds number. The subscripts S and U refer, respectively, to
steady-state and first-order unsteady aerodynamic processes. The corresponding sets
of force components are

{Fx o) = 3{Cx AS;} (72)

{Fz,ay =4 {z A% (Tb)

The distributions of local angle of attack, angle-of-attack rate, and surface slope
are represented by the superposition of specifically identifiable contributions as follows:

)
3y
{e} = {sig) +3 (&) *+ {w) )

The contributions to o7) and dzl arise from the time-dependent airplane angle of attack
and pitch rate and the thrust-induced flow perturbations. The set {Xa> consists of the

a {1} - %{xa} + {2 T) (8a)

& (1) - & ) (8b)

12



x-coordinates of points (one per panel) at which the aerodynamic boundary condition of

no flow through the surface is satisfied. The contributions to local surface slope, defined
at the same points as xg, arise from the jig shape (mean camber surface of the com-
pletely unloaded structure), control-surface deflection, and structural flexibility.

The flexible contribution to surface slopes can be expressed as the influence of a
structural operator 15_ operating on the Z-component of the forces acting on each panel
arising from aerodynamic, inertial, and propulsive sources as follows:

kp) = 3{Fza+Fz1+Fz 1) (10)

The aerodynamic-force set {Fz, Ay has been defined by equation (7b). The inertial-
force set (Fz, I} results from the action on the mass distribution of the set of
Z-components of linear acceleration arising from gravity and airplane motion. By using
a lumped parameter concept, let mj; be the mass assigned to the ith panel, assumed to
be located at the point (Xf’ V£, is 0). The effect of this mass can be replaced by the
inertial-force vector

— — d.-V..'
Fri= mi<g - —dt—1>

where V; is the velocity of mj in inertial space. Under the quasi-steady assumption,
the velocity and acceleration of mj relative to the airplane as a whole are neglected,
and the Z-component of inertial force can be written (ref. 4) as

FZ,I,i = mi(:g cos § cos ¢ - W - pv +qu +xf’i(('1 - pr) - yf,i(i) +qr)]
In the following section, equations of motion applicable to analysis of longitudinal motions
in a banked turn are developed. For this case, the bank angle ¢ and the rolling and
yawing velocities p and r are nonzero but are considered to be constants. In equa-
tion (30) the first four terms in the above equation are related to n, the normal acceler-
ation sensed at the airplane center of gravity. The last term gives rise to an antisym-
metric distribution of inertial force whose effect on the longitudinal stability derivatives
should be negligible and will be neglected. With these considerations, the inertial-force
set can be written as

{Fz,1} = ngo [m] {1} + @ - pr) fm] {x¢) (11)

where Em] is the diagonal matrix of masses assigned to the individual panels and {xf}
is the set of x-coordinates of points at which loads are applied to the panels and is not
necessarily identical with {xa}. The relationship of x5 and xf to panel geometry is,

13



of course, involved in the processes represented by both the aerodynamic and the struc-

tural operators, @ and .J.

The propulsive-force set {Fz, T} is the set of Z-components of panel forces
statically equivalent to the direct thrust reactions at the engine mounts.

The quantities X, Z, and M and the coefficients Cp,

Cny and Cp, can be

obtained by summation over the set of panels lying on one side of the plane of symmetry.

Thus,

T
= EZVI' )" {Fx A + Fx 1)

T .
Z= azvl{l} {Fza+Fz 1)

M= -%—{xf}T{FZ,A + FZ,T}

ca=-28)" (x,a)

on=-§8) 2.8

T
Cm = - &%) Cz,A)

(12a)
(12b)
(12¢)
(13a)
(13D)

(13c)

It is now possible to identify the set of physical variables with which structural
deflection modes can be associated and aerodynamic and thrust loads can be determined.
Table I lists these variables and the symbols used for each value in a steady reference

TABLE I.- THE PHYSICAL VARIABLES

Piysical vartable | Valie ireforence | Perturbation trom | guaiion
Control deflection 51 p (9)
Angle of attack aq ap (8a)
Angle-of -attack rate 0 a (8b)
Pitch rate a4 dp (8a)
Pitch acceleration 0 qa (8b), (11)
Normal acceleration ni np (11)
Mach number My Mp (6a), (6b)
Reynolds number Rq Ry (6a), (6b)
Dynamic pressure aq qp (7a), (7o)
Thrust command Ty Tp (8a), (10)

14



flight condition and for the perturbation of each from the reference condition. The equa-
tions through which their effects enter the aeroelastic problem are also identified.

In the foregoing discussion, the propulsive process was not described in detail. To
define the form of stability derivatives, the assumption is made that the propulsion sys-
tem outputs, {FX,T}, {FZ,T},' and {a; 7} can be described in terms of the physical
variables listed in table 1. ‘

In concept, the partial derivativesof X, Z,and M orof CA, CN, and Cp
with respect to each physical perturbation variable can be obtained through application
of equations (6) to (13). The desired stability derivatives are then defined by relations
such as equation (5) once the partial derivatives apy / omj have been determined.
Because a mutually dependent set of motion variables has been adopted, the partial deriv-
atives will be evaluated from expressions for each physical variable in terms of a mutu-
ally independent set of motion variables obtained by omitting either h or « from the
set (V,h,a, 6,5, T). &, and T appear without change
in the set of motion variables.
the motion variables, replacing & and 6 since, for longitudinal motions, 6
ear function of q, as shown in the following section.
expressed as a function of V, @, and # and their time derivatives in equation (34) of

Thus, the physical variables 5, «,
The variables q and q will also appear unchanged in
is a lin-
The normal acceleration n is

the following section.
V and h as follows:

The remaining physical variables are expressed as functions of

-V
_ph)ve
R="0 (15)
2
g -0y (16)

In applying the principle of small perturbations, it is convenient to define a non-
dimensional perturbation in velocity magnitude as

V-Vy
Vi

(17)

i=
where the perturbation velocity component V4 is directed along the unperturbed veloc-

ity vector and is orthogonal to the component apV1, as shown in figure 1,

After expressing each motion variable as the sum of a reference value and a per-
turbation value, the partial derivatives (apk /amj) ; can be derived and are given in
table II.
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ap
TABLE II - THE PARTIAL DERIVATIVES (ﬁ%)
n
mj P
M R q qa n 5|T
. - Vi
u M Ry 24, 0 —g—o—ql cosay [0(0 |
2 Vi .
u 0 U] 0 0 -==sin aq 0{0
€o
\£ .
@ 0 0 0 0 _E'o_ql sina; |00
. Vi
Q@ 0 0 0 0 ~==1C08 01 00
€o
60 0 0 0 0 -éisinelcos¢00
0
Vi
q 0 0 0 0 g cos ay 01]0
0
q 0 0 0 1 0 010
M1<8a> R1<8p> Rl<8u-> _1<8p>
h [-==(Z2] | == - == |== 0 0 glo0
a
1\eh/, |P1\3R/) ~ Fq\eh/, |P1\3h/;
] 0 0 0 0 0 1]0
T 0 0 0 0 oi1
The desired stability derivatives can now be defined by using equation (5) and
table I. In dimensional form,
= (X
%5 = <36 >1 (182)
\'A
X 1 ; ax
o (), B s (),
(X)) V1 aX
Xy = <a&>1 5 cos a1<an )1 (18¢)
(184d)
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Xq = (%)1 + ;’_01 cos al(%)l (18¢)
(), i
= P com o 5) 3 {38) +o8), - (), =
X3 = -gol sin al(%)l (18h)
X = (3—3})1 (181)
w - D), B, B, o

where the subscript 1 denotes a quantity evaluated at the reference flight condition or,
more specifically, at the reference condition values of the physical variables as noted in
table . The Z and M stability derivatives are defined by the expressions obtained
by replacing X in equations (18) by Z or M. The defining expressions for the coef-
ficient stability derivatives are equivalent to those for the dimensional derivatives but
may include constant factors as appropriate to render each motion variable dimension-
less; thus

N
2
2V /8C 2V aC
_ 1 A _ 1 A
CAc'z_ c \aa )1 EoC cos a1< B )1
> - (19)
2
2V1/3CA 2V1 aCA
CAq: c\aq 1+g0c cosalTI
>

The motion variables 6, «, 6, U, and possibly T are already dimensionless. The
stability derivatives of Cp, Cp, and C,, with respectto 4, 4, and h are considered
herein to retain units reciprocal to those of the respective motion variables.

In evaluating the stability derivatives from wind-tunnel experiments and/or theory,
it is anticipated that the coefficient form will be evaluated first and then converted to the
dimensional form for use in stability analysis. Expressions for the dimensional deriva-
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tives in terms of the coefficient derivatives are needed therefore. Combining equa-
tions (2) and (4) gives '

aSCh Fx T
"mVy  mVy

asCy  Fz,r

mVy mVy

_ascCy My,T

M Iy Iy

The partial derivatives with respect to the physical variables are

oX _ SCp 84 _ GS 9Cp 1 X T

ETon mVy apy - mVy 8p, + mV; 3py

oz _ SCn o4 _ 48 y 1 FzT
9 mVy 9y mVy 9  mVy 9Py

oM _5¢Cpy 8  dSc 3Ch 1 aMY,T

p Iy Opy Ty 5Dy +1_Y' 5Dy
Note that
_ lfor p,=4
29 _ x
o=
P 0 for Py # q

Substituting equation (21a) into each of equations (18) in sequence results in

<2 S (Ca) 1 (FxT

(20a)

(20Db)

(20c¢)

(21a)

(21b)

(21¢)

(22a)

~ 48 |(eCa\ Vi _ . (9Ca 1 |PFXT) vy —aFX’T>
Xa:‘m_\q[(W>1‘§gq1 sinoy{i) | *mvg |\ Pa /, Tg e /| 22

>
R
I

d{Sc |/aC 2V 12 aC oFx T\ V 8Fx
.1 5 &A - t cos a1< anA> + le ( a}f’ - g—l cos a4 an’
amV;2ls &/  €o 1 1\ 9% /g

A ° 1
1
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S aC in 61 ¢ oF
_45 g sin 94 cos ¢< A) - £510 71 °08 qb/ X’T> (22d)
1 1

6= mV; g, gomVy \ on
q,Sc |/aC 2V, 2 aC oF \ oF
I | . qfé r i cos al( A) +ﬁ< X’T> +§—1-cos al( T (22e)
2mV1”\o 5% 0 1 1\ ¥ /1 % om /y _
1
S [ac A aF‘X,T (221)
mVl\ o m 1 1
L ;S |vy aCp aCa aCa aCaA
Xq = - mvl{goqlwsal ), tMilErn) R ), Mg ) Y 2CA
v oF aF oF oF
1 X,T> X,T XT) | g KT
—=q, COS a1< + M1< + Ry + 2q | —=— (22¢g)
. 948 5Cp 1o (FXT
X4 = e, sin al( . " e sin o4\ —=— . (22n)
_ .48 (pCy 1 (FxT .
AT = "mVy\ 8T * mVy\ 8T (221)

__ 48 ﬂ(@a) <8_C_é> N ﬁ(ie) El.(?.&) (ﬂ) +i;(8_9> (ﬂ)
mV aj \sh oM P. \dh JTRY:) ) R oh aq
O e A R A p POV
CA1 _Mifoa *’FX,T) - [afe)  Rafo ()
a1 \oh oM ah ah oR
av; 1\ B B AP 1

51 aFX,T .
"5y 8h>1< o )1} (229)

Equations (22) express the dimensional X derivatives in terms of the partial derivatives
of Cp with respect to the physical variables. Equivalent expressions in terms of the
complete coefficient form of the stability derivatives are
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20

q F
45 1 (° X,T)
Xp = -mVl CA6 + mV1< 90 1

a aF aF T
X =-q_IS_CA +.L.<_£r_> _ﬁql sina1<%>

5=t 7 CAs + iy < ) g °% 1\
2mV1 myj 1 Y
a8 g sin 4y cos qb/an,T)
Xg = _mVI Ag ~ gomVy; \ on

1

q F
qISc 1 aFX,T Vl <3 X,T>‘,
= - 2CAq+m—.V.1< 3q +—g0 COSCYI o
2mVy 1

c 3FX,T>
X4 = "mvy Ay * mv i\ 5 \

oF 8F
q,8 1 X, XT
X4 = 5w, (Cag + 2Ca.1) F g, 1 08 “1<T> ¥ M1< M

ol oF
d 1 < X, >
= -—=——CAzx - sin o
X4 mv, A mg, N\,
51 c 1 aFX,T
T= “mVy AT mVy\ oT

(23a)

(23b)

(23¢)

(23d)

(23e)

(23f)

(23g)

(23h)

(23i)

(237)



The expressions for the Z stability derivatives can be written simply by replacing
X with Z, Cp with Cy, and FX,T with FZ,T in equations (22) and (23). Simi-
larly, expressions for the M stability derivatives are obtained by replacing X with
M, Cp with -cCp, Fx T with My, T, and mV; with Iy in equations (22) and (23).

The relationship of the stability derivatives developed herein to those discussed in
references 2 and 3 is of interest. The derivatives with respect to physieal variables as
used in this paper are, in many cases, analogous to, and may be equal to, the derivatives
termed "'zero mass derivatives' in references 2 and 3. The stability derivatives of this
paper (i.e., derivatives with respect to the motion variables) are analogous to those
termed "equivalent elastic derivatives' in references 2 and 3. The values of the equiv-
alent elastic derivatives as defined in references 2 and 3, however, will be different from
those of the stability derivatives defined herein because the equivalent elastic derivatives
were defined under the assumption of constant dynamic pressure. This assumption
results not only in the omission of the dynamic-pressure contribution to the 4 deriva-
tives, but also in a completely different form for the normal-acceleration contribution
to all derivatives. Note in particular that for an unaccelerated reference flight condition

qq = 0), equations (18) show that the derivatives with respect to angle of attack reflect

no contributions from normal acceleration. In contrast, all the equivalent elastic deriva-
tives of references 2 and 3 are influenced by normal-acceleration contributions termed
"inertial relief."

Formulation of Equations of Motion

The equations of motion are formed by expressing the conditions for dynamic equi-
librium in each degree of freedom (egs. (1)) in terms of the motion variables. The sta-
bility derivatives defined in the preceding section represent the aerodynamic and thrust
contributions in terms of the motion variables. The inertial contributions must now be
expressed in terms of the same motion variables. For the airplane as a whole, the iner-
tial reaction to gravity and translational accelerations in vector form is

Py = m<* - g‘—’) (24)
where

g=1(-g sin ) + T(g cos 6 sin ¢) + k(g cos 6 cos ¢)

V=Tu+jv+kw

av _

at iv+ jv+kw+w XV
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and
o=1p+Jq+Kkr

and T, -j', and k are unit vectors directed along the X, Y, and Z body axes,
respectively.

Similarly, the inertial reaction in the airplane rotational degrees of freedom is

iy = -SH - Thy - Thy - Biig - 5 B (25)

—t

. [
where the angulir momentum H canbe written H=1.® and the components of the
inertia dyadic I 1in the body-axis system can be written in matrix form as

Ix 0 -Ixy
m
I= 0 Iy 0
-Ixy 0 I

if inertial symmetry about the X-Z plane is assumed.

After performing the indicated vector operations, the inertial components in the
six airplane degrees of freedom are found to be

Fx 1=m(-g sin 6 - 4 - qw +rv) (26a)
Fy1= m(g cos 6 sin ¢ - V - ru + pw) (26b)
Fgz.1= m(g cos 6 cos ¢ - W - pv +qu) (26¢)
My 1= -IxP + Ixgt - (IZ - Iy)qr + Ixzqp (26d)
MY,I = -Iy§ - (IX - Iz)pr - IXZ(pZ - rz) (26¢)
Mgz, 1 = -Izi +Ixzb - (Iy - Ix)pa - Ixzar (26£)

In order to relate the variables in equations (26) to the reference and perturbation
values of the motion variables adopted in the preceding section, use will be made of the
defining equations for angle of attack and sideslip,
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a = tan-1 ¥ (27a)
B = sin-1 % (27b)
the expression for altitude rate,

h=usin § - v cos g sin ¢ - w cos 9 cos ¢ (28)

and the expressions for the Euler angle rates,

f=qcos ¢ -r sin ¢ (29a)
d=p+(qsin ¢ +r cos ¢)tan 6 : (29b)
Y = (q sin ¢ +r cos ¢)sec 6 (29¢)

Note that equations (27) relate the linear velocity components to aerodynamic flow
angles and equations (29) relate the angular velocity components to an earth-fixed refer-
ence. If a quiescent.atmosphere and a nonrotating earth are assumed, the linear and
angular velocities of equations (27) and (29) are identical to the velocities relative to
inertial space appropriate for use in equations (24) and (25).

The acceleration sensed by a seismic translational accelerometer located at the
airplane center of gravity is FI/ m. The Z-component of this acceleration expressed in
g units is defined herein as the normal acceleration n. Thus, from equation (26¢)

n=2_cos 6 cos ¢ + —1-(—v'v - pv +qu) (30)
2o g,

It should be noted that n is directed along the Z-axis and is, therefore, not iden-
tical with the load factor, which is usually defined as the component of inertial force nor-
mal to the flight path and the Y-axis, relative to the airplane weight,

F cosa - F sin o
Zz,1 I
Load factor = 2 %

T (31)

Equations (24) to (31) are applicable to large amplitude airplane motions in six
degrees of freedom but are, in general, nonlinear, The linearized equations in the three
longitudinal degrees of freedom usually have been derived by constraining the asymmetric
motion variables (v,p,r,$) and their time derivatives to zero and expressing the remaining
variables as the sum of a steady reference value and a small time-dependent perturbation.
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The equations are then linearized by neglecting squares and products of perturbations.
On examining the impact of the above constraints on equations (29a) and (26a and c), it is
concluded that the only reference flight conditions which are both symmetric and steady
are those with zero pitching velocity, implying a straight flight path. I an altitude-
dependent atmosphere is considered, the admissible reference flight conditions are fur-
ther constrained to straight level flight.

It is apparent that analysis of flight at load factors significantly different from unity
requires either violation of the small perturbation assumption or relaxation of either the
symmetric constraint or the steady constraint on the reference flight condition. In order
to retain small perturbations for elevated load factors, a symmetric, pseudosteady ref-
erence flight condition having constant pitching velocity has been assumed on occasion.
This condition is visualized as a wings-level pullup with a vertically curved flight path.
Reference values of 6, h, and h can be defined only at one instant of time. Physical
interpretation of the perturbations at other instants then becomes unclear under this
assumption.

Alternatively, a steady, pseudosymmetric reference flight condition can be assumed.
Steady flight is achieved by constraining the time derivatives of all variables to zero,
which requires that the angular velocity vector @& be directed along the gravity vector ¢.
This condition can be visualized as a constant-altitude banked turn, or if a uniform atmo-
sphere is assumed, a climbing or diving spiral. Approximate symmetry is achieved by
constraining only the sideslip angle to zero. The reference flight condition must then
satisfy the conditions for static equilibrium in all degrees of freedom, and the linearized
longitudinal equations of motion are formulated by allowing small perturbations in only
the longitudinal degrees of freedom. The equations of motion developed herein will be
formulated for this steady, pseudosymmetric class of reference conditions since the truly
symmetric conditions are special cases of this class,

By applying equations (27) to the case of zero sideslip, the velocity components can

be written as
u=Vcosa
v=20
w =YV sin a
The longitudinal variables are stated in perturbation notation as

V=Vi(1+3d) (Seeeq. (17).)
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6=61+6p
q_Q]_'l'qp
h=hy+\ hadt
t
h=l'11 +1:lp

Then, for small perturbations

u="V; cos a; +1Vy cos @y - osz1 sin aq
w=Vq sin ag +ﬁV1 sin @ + apV1 cos aq
u= {iVl cos aq - @Vy sin o

W= 111V1 sin aq + &Vl cos ay

and, by substitution in equations (26), (28), and (30),

Reference value

e

Pert/uzbation

r N
FX,I = m(-g sin 61 - qu1 sin al)

FY,I = m(g cos 6y sin ¢ - Vqr cos o

+ le sin al)

r N . ——
+ mV1<-uq1 sin @y -ucos a; - apQy €oS ay

. . g
+ & sin @q - g, sin @ - 6, = cos 0 ) (32a)
1~ 9p 17" Vi 1
+ mVl[ﬁ(p sin @ - r cos al) + ap(p cos aq
- g . .
+r sin @1} - 64 v sin 04 sin 32b
1) - 0p ; sin 0y ¢] (32b)

FZ,I = m(g cos 64 cos ¢ +Vyqq cos al) +mVy Qiql cos ay - {i sin @4 - apqq sin ay

- & cos o4 +qp cos aq - Gpvilsin 01 cos qb)

(32¢)
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Reference value Perturbation

o~

r - N N ‘ —
My 1= -(Iz - Iy)a,* + Ixzpa, +ap[-(Iz - Ty)r +Ixz) (32d)
My 1= -(Ix - Iz)pr - Ixg(p? - r2) - dly (32e)
Mgz, 1= -(Iy - Ix)pay - Ixza,r +qy E(IY - Ix)p - Ixzr] (321)

h= Vy(cos ay sin 6y - sin @y cos 61 cos ¢) +UVq(cos oy sin 8 -~ sin &y cos gy cos ¢)
- apVy(sin ay sin 8; +cos @y cos 6; cos qb)

+ epvl(cos @q cos 6y + sin @y sin 61 cos ¢)
(33)

g Vl Vl,\ 2. .
n=g;cos 61 cos ¢ +g—o-q1 cos aq +§;—uq1 Cos @y - usin oy - apqq sin @y
- & cos aq +qy, €oS oz1> - Bp-gg—osin 61 cos ¢

(34)

Unfortunately, equations (32b, d, and f) show that in turning flight, the lateral -
directional components of the inertial reactions depend on the longitudinal motion pertur-
bations. Clearly, the resulting lateral-directional perturbations could couple back into
the longitudinal motions. In order to perform a longitudinal analysis without detailed
knowledge of lateral-directional characteristics, the lateral-directional excitation will be
neglected, with the knowledge that the error introduced diminishes to zero as the turn
rate is reduced to zero.

For the steady, pseudosymmetric reference condition, assume that static equilib-
rium of rolling and yawing moments can be achieved at zero sideslip with no net lateral
force arising from aerodynamic and thrust sources. Equation (32b) then becomes

ngcos 61 sin ¢ - r cos @7 +p sin @y =0 (35)
and from equations (29a and b)
qqcos ¢ -rsing=0 (36a)
p+ (ql sin ¢ +r cos qb) tan 61 =0 (36b)
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Static equ_ilibrium in the longitudinal degrees of freedom is expressed by substitution of
the reference portion of equations (32a, c, and e) into equations (2)

X(ﬁl,a1,q1,n1,M1,R1,('11,T1) = —V&l- sin 91 + ql sin aq ‘ (378.)

Z(61,al,ql,nl,Ml,Rl,ql,TI) = -Vgl- cos 7 cos ¢ - qq COS oy (37b)
- Iy -1 I

M(Gl,al,ql,nl,Ml,Rl,ql,Tl) = —X—I-Y—Z— pr + —%—({Z-(pz- - rz) (37¢)

The system of eight equations made up of equations (35) to (37) and the reference portion
of equations (33) and (34) is sufficient to define &, @y, qq, Ty, 6y, ¢, p,and r
if values of Vy, My, Ry, 4y, ny, and hy are specified. It is interesting to note
from equation (37c¢) that an inertial pitching moment exists in steady turning flight, whick
can influence the control-limited load factor of interest for fighter airplanes.

The system of linearized longitudinal perturbation equations can now be formed
from equations (2) by expressing the aerodynamic and thrust contributions in terms of the
dimensional stability derivatives, expressing the inertial contribution by equations (32a,
c, and e), supplementing the system with the altitude equation (33), and subtracting the
reference equations (37) and the reference part of equation (33). The resulting equations
are

ﬁ(Xﬁ - cos 0‘1) + ﬁ(Xﬁ - qq sin al) + c'r(Xd + sin al) + _ozp<Xa - qq cos ozl)
+ QXq + qp(Xq - sin ozl) + 9p<X9 - VgI cos 91) +hpXp + 6pXp + TpXT =0 (38a)
ﬁ(Zﬁ - sin 0‘1) +ﬁ(Zﬁ +Q, cos 0‘1) + &(ZC'! - cos 0‘1) + ap(Za -q, sin al)

+ CIZC-l + qp(Zq + COS a1> + 9p<29 - Vgl— sin 64 cos ¢>) + hth + 5pZ5 + TpZT =0 (38b)
Mg + 6Mg + &My + apMy + Q(Mq - 1) +qpMy + 8,Mp + hpMy, + 6,Mp + TpMp = 0 (38c)

ﬁVl (cos @y sin 6y - sin a4 cos 6y cos ¢) - apVI(sin ayq sin 6y + cos @y cos 67 cos qb)

+ epvl(cos @q cos 971 + sin ay sin 61 cos ¢>) - ﬁp =0 (38d)
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To obtain a solution, this set must be supplemented by equations for the two control sys-
tems, which will not be stated here, and by the perturbation equation obtained by subtract-
ing equation (36a) from equation (29a), that is,

ép - qp cos ¢ =0 (38e)

since 67 = 0.

For the special case of a steady, straight, symmetric reference flight condition,
¢p=p=qy=r= 0 and the equations of motion are simplified accordingly. In particular,
equation (38d) becomes

ﬁVl sin(el - al) - ale COS(@I - a1> + 9pV1 COS<91 - ozl) - flp =0 (39)

and the reference equations are

g N
X4 ==-sin g
1 Vl 1
g
741 = -=——cos b
1 \Z] 1
M;=0 (40)

ﬁl =Vq sin(91 - al)

g
ny =& cos 0
17g; 1
J
If the reference condition is further constrained to level flight, then 6; = a4, and the
resulting simplification of the equations of motion is obvious.

It should be noted that equations (38) can be considered to be a hybrid set of equa-
tions of motion in the sense that the motion variables are resolved on stability axes (1:1.V1
is directed along Vl>, whereas the X and Z forces are resolved on a body-fixed axis
system whose orientation in the airplane plane of symmetry is arbitrary for rigid air-
planes and is determined by structural consideration for elastic airplanes. The more
conventional stability-axis system of equations of motion is obtained from equations (38)
by simply setting @y = 0. I the stability-axis system is to be used for elastic airplanes,
it is recommended that the stability derivatives be determined first on a structurally
appropriate body-axis system and then be transformed to the stability-axis system by
the usual force transformation.
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Calculation of Stability Derivatives

In this section, an influence-coefficient procedure for calculating the stability
derivatives is outlined. This procedure has been implemented in a digital computer pro-
gram which is presented and described in the appendix. In addition to the assumptions
already made in defining the stability derivatives, the following assuniptions are made in
order to simplify the calculation procedure:

1. Aerodynamic loadings are derived from a linearized, inviscid, thin lifting-surface
theory.

2. Singular aerodynamic loads arising from edge suction are neglected.
3. All unsteady aerodynamic effects are neglected.
4, All contributions of the propulsion system are neglected.

The effect of assumptions 1, 3, and 4 is to eliminate the variables R, &, and T
from the list of physical variables in table I. Equations (6b) and (7b) are then represented
by the matrix expression

{F%“: - B @ + ) (41)

where [A] is an aerodynamic influence-coefficient matrix which can be obtained from
any suitable lifting-surface theory for a given Mach number and paneling geometry. "In
the present development, aerodynamic symmetry is assumed, and each element of [A]
represents the aerodynamic normal force acting at a load point (xf,yf, O) due to a unit
change in mean-camber -surface slope at a symmetric pair of control points (xa,iya, 0)
for unit dynamic pressure,

The structural operator .8 in equation (10) can also be represented by an influence-
coefficient matrix such that

& = ES]%{F(Z{A} * {FZ,I}} (42)

where each element of [S] is the elastic change in mean-camber-surface slope at an
aerodynamic control point (xa,ya_, 0) due to a unit force applied at a symmetric pair of load
points (xf, :!:Yf,O). Combining equations (8a), (9), (11), (41), and (42) and solving for the
aerodynamic-~force set give
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{?%é} = I:[l] - Q@ES]]-IW {{Ejig} +a{l) + o0& - %"{2};—3}

+ 8] {ngg [m] {1} + (& - pr) [m] {xf}} (43)

The coefficients CyN and Cp, can now be written

Cy=-2 @}T{%‘L‘:} (44a)

i3
Cpy = -_é?'a(xf}T{%é} (44b)

Under the second assumption stated at the beginning of this section, aerodynamic
edge suction is neglected, and the aerodynamic force on each panel then acts normal to
the mean camber surface at that panel. If the mean-camber-surface slope is small
everywhere, the axial-force coefficient is approximately

F
ca=-2g7T {{Zi-;“‘} (44c)

where {ef} is the set of mean-camber-surface slopes at the panel load points

& = &gty *00 D [@{?{FE’A} + {Fz,r}} (45)

It should be observed, however, that the neglect of edge suction implies a rather gross
oversimplification of the true aerodynamic loads, particularly in subsonic flight, and the
resulting axial-force coefficient must be considered incomplete. Despite this shortcom-
ing, the axial stability derivatives will be formulated herein to provide a basis for future
refinement and to allow an examination of their possible significance to the stability of
elastic airplanes.

The stability derivatives are calculated by substituting the partial derivatives of
equations (44) with respect to each of the physical variables a, &, qc / 2Vy, n, q, M,
and § into the coefficient form of equations (18). By denoting any physical variable

by b,
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aC oF ‘A ﬁ
SUN . _% ot {__Z___/_}l (463)

op ap
aC 2 T aFZ,A/‘i :
O . (4op)

% _ _%{ef} BFy, A/Q} { } {Fz A} | (46¢)

The right-hand side of equation (43) can be interpreted as the product of an aero-
elastic correction matrix, the aerodynamic influence-coefficient matrix, and a vector of
pseudorigid aerodynamic boundary conditions which includes structural distortion from
only the inertial loads. To simplify the notation, the aeroelastic correction matrix can
be defined as

B - [ - qmis]]” (a7)

and the vector of boundary conditions as

0 = e +a @ 269 - {7 + ool O + @ 25 )

(48)
At the reference flight condition,
2
@}y = Gig) + o1 (U + 015 - xlrcl{z_% + [8{n1go [m] {1} - pr [m] {xf}}
(49)
{FZ’A} - 8], &) (50)
Tq J; =1 191

and

@, = Gigd + 01600 * (1 (0B, 1,0, + nago [ O - pr ) s}

(51)
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The partial derivatives appearing on the right-hand' side of equations (46) can be
evaluated in a straightforward manner with respect to the first five physical variables «,
6, qc / 2Vy, n, and §. A finite-difference technique has been chosen to evaluate the
derivatives with respectto M and ¢. For incrementsin M and q which are small
relative to the reference-condition values, the following matrices are defined:

[[1] - ((il + Aﬁ)[zﬂl[sj]-l - [D] - (511 - Aq)@l’:sj}-l

[Bq = =— 244

[[1] -4 E‘*M,1+A.M][S]]-1E\M,1+AM] - [ﬁ] - Gy [AM,1-Amj[SJ]_1E&M,1-AM]

EBMAM] = 2AM

The matrices of the partial derivatives of Fz, A /c'l and ¢ with respect to each phys-
ical variable are expressed in table IIIl. These values along with the reference-~condition
values of equations (49) to (51) are used in equations (46) to find the derivatives of Cap,
CN, and Cp, which are in turn substituted into the coefficient form of equations (18) to
find the stability derivatives.

q
TABLE III. - THE PARTIAL-DERIVATIVE MATRICES { Z A/ AND

w

S, | Zzalg | (2

a [BJIEAJ]_{I} _ ql[sf][B]]_@1<1}

5 B],[4], {&) ay[St] Bl (Al fe5) + {e5,1)

B | B (2| e, (2

n go(Bl 1 (A1 [SIm] {1} | eo[se(1] +a, (B, (A] (S]] (¥}

; 8,080,800 b | (D[P 6 6,0, 5] [ )

M [BmAM] €} dy (50 BmAm| €74

q Bd 4, @, s a, o + (], &y
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Evaluation of equations (49) to (51) requires knowledge of the mean-camber-surfaceé

slopes of the jig shape {ejig} and {ejig f} as well as the reference-condition values
td
of @y, 6y, 41, ny, b, and r. Assume that the airplane configuration has been fully

defined at a single, straight, level design flight condition and that the design air-load dis-~
tribution is known. By applying equations (9), (42), and (45), the jig shape slopes are
found to be

{Gjig} = {edes} - GdES{GG} - [S] {ides{F_éﬁ} * Dges€o [mdes;l {1}> - (52a)

des

F
Giig,f) = {<des,f) - Odes (¢5,1} - [St] %des{ (Zj’A}d + ndesgo[mdes] {1}} (52b)
es

The values of the physical variables at any desired reference flight condition can be found
by applying equations (33) to (37). Some simplification results, however, from the present
assumptions under which the effects of thrust and nonlinear aerodynamics are neglected.
If the thrust is assumed just sufficient to balance the X forces, equation (37a) can be
neglected. Equations (37b and c) can be restated as

aCN 3CN qic BCN BCN 3CN
CN,jig + *1 5 01 753 +2v13 e T™M o T
<2V1

Vv
= ——1<£ cos 61 cos ¢ +qq cos a1> (53a)

N 9Cm Cyy  91¢ oCyy 9Cm 9Cm
Cm’]1g+oz1 50 +9q 55 +2V1 a(qc>+n1_3n -pr-—aq
PASY
=1_|1, - - 2 _ .2
= 75¢ KIZ Ix)pr Ixz(p r ﬂ (53b)

where

Onjig = -3 B, [, g
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and

Crn, jig = -g—c{*f}T @1@1{%@}

The derivatives with respect to  are used to express the pr contributions since the
inertial -force distribution for unit § is shown by equation (11) to be equal to that for a
unit value of -pr. For specified values of Ml and ('jl, the derivatives appearing in
equations (53) can be calculated by using equations (46) and table ITII. The reference flight
condition can then be fully defined by solution of equations (33) to (36) and (53).

Effect of Structural Fixity Point Location

The influence -coefficient procedure for calculating stability derivatives of an elas-
tic airplane, as outlined in the preceding section, makes use of a structural influence-
coefficient matrix (8], each element of which is the elastic change in mean-camber-
surface slope at an aerodynamic control point due to a pair of unit forces applied at a
symmetric pair of load points. Evaluation of this matrix requires that the structure be
assumed clamped at a structural fixity point. Any nonequilibrium distribution of loads
applied to the structure must then be reacted by a force and moment imposed at the fixity
point, and the deformed shape, calculated by using the matrix (8], will include implicitly
the effects of these reactions. The deformed shape depends, therefore, on the fixity point
location. Since the load distribution arising from a unit perturbation of any single phys-
ical variable is, in general, not in equilibrium, the values of the stability derivatives cal-
culated by the procedure outlined will depend on fixity point location.

When a complete and consistent set of stability derivatives is used in the equations
of motion derived from the conditions for dynamic equilibrium, the reactions at the fixity
point vanish and the deformed shape at any instant is, in a coordinate-free sense, inde-
pendent of fixity point location. Some of the motion variables, however, for example, «,
9, and their time derivatives, are not coordinate-free but are defined relative to the ref-
erence axis system. Moreover the elastic surface slope changes defined by the matrix
[S] are also expressed relative to the reference axis system and must be zero at the
fixity point. Thus, the orientation of the reference axis system must be considered
invariant with respect to a material element located at the fixity point, as indicated in
figure 1.

It is apparent, then, that after application of the equations of motion, any quantities
that are independent of reference axis system orientation in the airplane, such as char-
acteristic roots, the variables 1, &, h, and the magnitudes of resultant force, moment,
or acceleration vectors, are also independent of the fixity point location. Those quan-
tities dependent on reference axis system orientation, such as the variables «, 9, q,
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and components of force or acceleration vectors, are also dependent on the location of the
fixity point assumed in the definition of the matrix [§].

ILLUSTRATIVE ANALYSIS

The Example Airplane

To illustrate the calculation and use of the stability derivatives defined in this
paper, a longitudinal quasi-steady aeroelastic analysis of a high-performance supersonic
transport airplane configuration has been performed. Although the analysis was per-
formed in U.S. Customary Units, the results are presented in the International System of
units (SI). The configuration selected was that used in reference 5 to illustrate a number
of aerodynamic design integration features. This configuration was also the subject of
a preliminary design study by The Boeing Company during which airplane weight and bal-
ance information and elastic properties of the structure were developed. The author
gratefully acknowledges the cooperation of The Boeing Company in supplying a symmetric
structural slope influence-coefficient matrix and weight distribution data for use in the
present analysis. It should be emphasized that these data resulted from a preliminary
design study and are not necessarily applicable to an airplane design meeting all the
requirements of a commercial supersonic transport airplane. In particular, the struc-
tural elastic characteristics do not reflect any additional stiffening which might be neces-
sary to achieve adequate controllability and flutter margin.

For the present study, the aerodynamic effects of the vertical tails and engine
nacelles were neglected and a new mean camber surface was designed to minimize the
drag due to lift and to trim the airplane with zero control-surface deflection at M = 2.7,
Cn = 0.07914, and a center -of-gravity location at 0.417c. The configuration planform
and the paneling geometry used for subsonic and supersonic analyses are illustrated in
figure 2. Corresponding aerodynamic influence-coefficient matrices were calculated by
using the vortex-lattice method of reference 6 for the subsonic analysis (M1 = 0.8) and a
procedure based on the method of reference 7 for the supersonic analysis (M1 = 2.7).
The load points and aerodynamic control points were located at the quarter-chord and
three-quarter-chord points, respectively, of the panel midspan chords for the subsonic
case and at the panel centroids and 0.95 panel chord points, respectively, for the super-
Sonic case.

The structural influence-coefficient matrix supplied by The Boeing Company was
transformed to the appropriate forms for the subsonic and supersonic panel arrangements
by using a second-order, bidirectional interpolation procedure applied successively to the
slope-point and load-point transformations. The fixity point of the structural influence-
coefficient matrix used in the present analysis was located at 0.33c.
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The weight distribution supplied by The Boeing Company was transformed by dis-
tributing each original weight element among the three closest load points of the new
panel layout in such a way that the moments about the X- and Y-axes were unchanged.
The distribution of structure, contents, and payload weight, totaling 1.56 MN (351 560 1b),
was considered invariant., Fuel capacity constraints, based on the fuel weight distribu-
tion supplied by The Boeing Company, were assigned to each panel. Within these con-
straints, fuel weight distributions yielding the following combinations of airplane weight,
center -of -gravity location, and pitching moment of inertia were developed:

Weight (}_{) Iy x 106
MN b “le.g kg-m2 slug-ft2
2.67 600 000 0.41 61.61 45.44
2.67 600 000 47 62.43 46.05
1.87 420 000 .41 56.33 41.55
1.87 420 000 AT 57.43 42,36

The weight distribution for the design condition, W = 2.10 MN (472 500 1b) and center of
gravity at 0.417c, was also developed.

The chordwise distributions of mean-camber-surface slope for the design shape
€des and the jig shape fig at several spanwise stations are shown in figure 3. These
slopes are referred to a reference axis system oriented in such a manner that the angle
of attack at the design condition is 2.89, This orientation was chosen so that the average

slope of the design mean camber surface was approximately zero.

The longitudinal characteristics of the example airplane have been analyzed for a
series of reference flight conditions including center-of-gravity locations of 0.41c and
0.47c, the two airplane weights noted previously, and either five values of dynamic pres-
sure ranging from 7.2 kN/m2 (150 1b/ft2) to 47.9 kN/m2 (1000 1b/ft2) for M=0.8 or
four values of dynamic pressure ranging from 14.4 kN/m2 (300 1b/ft2) to 47.9 kN/m?2
(1000 lb/ftz) for M= 2.7. All reference flight conditions corresponded to straight level
flight, For comparison, the rigid airplane having the design mean camber surface was
also analyzed.

Longitudinal control and trim were achieved by equal deflection of the inboard and
outboard trailing-edge control surfaces outlined in figure 2. Because the control surface
edges were not coincident with panel boundaries, control deflections were represented by
assigning to each panel a value of €5 equal to the ratio of the control surface area lying
within that panel to the total panel area. For each panel, the values of €, and €5
were assumed to be identical.
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Aerodynamic Derivatives

The computer program described in the appendix was used to calculate the longi-
tudinal stability derivatives together with parameters describing the reference flight
conditions. The values of angle of attack, control deflection, and normal- and axial-force
coefficients calculated for the reference flight conditions are plotted in figure 4 for the
rigid and elastic airplanes at the two center-of -gravity locations. The axial-force coef-
ficient includes an increment of 0.00550 to represent skin friction and form drag at
M = 0.8 or an increment of 0,00533 to represent skin friction and wave drag due to vol-
ume at M = 2.1. The aeroelastic effects on trim angle of attack, control deflection, and
axial-force coefficient are apparent from figure 4.

The partial derivatives of CpA, CnN, and Cp, with respect to the physical vari-
ables are shown in figures 5, 6, and 7. Because unsteady aerodynamic effects were
neglected, no partial derivatives with respect to & were calculated. When the stability
derivatives are formed by using equations (18), however, stability derivatives with respect
to & will exist for the elastic airplane because of the contribution of the partial deriva-
tives with respect to n. For the rigid airplane, all derivatives with respect to n, 4,
and § are zero. All Cp derivatives and the derivatives of Cy and Cp, with
respect to Mach number depend on the reference values of @ and 6 and consequently
vary with dynamic pressure. Partial derivatives of CN and C,, with respect to the
remaining physical variables are independent of the reference flight condition for the
rigid airplane.

The effects of aeroelasticity on the partial derivatives are apparent from figures 5,
6, and 7. Note in particular the large destabilizing aeroelastic effect on 3C,, / .

The Characteristic Stability Roots

The longitudinal stability derivatives were calculated by applying equations (18) to
the partial derivatives of figures 5, 6, and 7. The three-degree-of-freedom linearized
equations of motion (eqs. (38)) were then solved for the characteristic roots and the trans-
fer functions 1 /6p and ny / 6p. The perturbation part of equation (34) was included in
the system of equations to define np. The altitude-dependent parameters required for
the solution are shown in figure 8 and are based on the 1962 U,S, Standard Atmosphere
(ref, 8). Solutions corresponding to a locally uniform atmosphere were also obtained by
setting the derivatives Xp, Zp, and My equal to zero.

The real and imaginary parts of the characteristic roots are presented as functions
of dynamic pressure for the rigid airplane in figure 9 and for the elastic airplane in fig-
ure 10. Real roots are shown as faired lines without symbols. The calculated real and
imaginary parts of complex roots are indicated by symbols, with the same symbol shape
used for the real and imaginary parts of any particular conjugate pair of complex roots.
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Calculations were made at only four or five values of dynamic pressure, and therefore,
the lines faired between calculated points should be considered as only illustrative. In
particular, the locations of branch points, that is, points of transition between a pair of
real roots and a pair of complex roots, are only approximate.

The system of equations yields five characteristic roots including one root arising
from the differentiation of h in the altitude equation (38d). For the cases representing
a locally uniform atmosphere, the altitude equation is uncoupled from the remaining equa-
tions and one root is always zero. With a standard atmosphere, the altitude root was
usually too small to be apparent in figures 9 and 10 except for the aft c.g. cases at
M = 0.8 (figs. 9(b) and 10(b)) where the altitude root can be seen at low dynamic pres-
sure. The remaining roots in most cases can be clearly identified as a short-period
pair and a phugoid pair although these root pairs were not always oscillatory. When the
remaining roots are all complex, they can be recognized clearly as a phugoid pair and a
short-period pair, with the phugoid pair having the smaller magnitude (smaller undamped
natural frequency). Identification of real roots is not as straightforward, but in most
cases, the faired lines in figures 9 and 10 can be used to relate real roots to either the
‘phugoid or the short-period mode at other values of dynamic pressure,

The assumption of a locally uniform atmosphere had a destabilizing effect on the
phugoid roots, usually manifested as a reduction in phugoid frequency, but had little effect
on the short-period mode, particularly when this mode was oscillatory. A comparison of
figures 9 and 10 shows that the effect of aeroelasticity on the short-period root pair was
to reduce both frequency and damping with the frequency reduction being more pronounced.
As a result, the short-period mode of the elastic airplane in many cases became over -
critically damped and therefore yielded two aperiodic (real) roots. This tendency was
most apparent with heavy weight, aft c.g., high dynamic pressure, and subsonic speed.

In all cases, however, the short-period root pair remained stable as indicated by the neg-
ative real parts.

The phugoid roots of the rigid airplane (fig. 9) were always small in magnitude and
corresponded to either a lightly damped low-frequency oscillation or a mild aperiodic
divergence. In contrast, the elastic airplane (fig. 10) exhibited, in many cases, phugoid
roots which were much larger in magnitude and were strongly divergent in either an
oscillatory or aperiodic manner. Again this tendency was most apparent with heavy
weight, aft c.g., high dynamic pressure, and subsonic speed and appeared to be particu-
larly sensitive to changes in weight or possibly weight distribution.

In an attempt to identify the reasons for the aperiodic short-period roots and the
strong phugoid divergence, the equations of motion were simplified to two second-order
sets yielding decoupled approximations to the short-period and phugoid modes. For a
locally uniform atmosphere and a wings-level reference flight condition, equation (38d)
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can be omitted and equation (38e) becomes ép = Qpe After resolving the force equations
onto stability axes and applying the Laplace transformation, equations (38a, b, and c) can
be written in matrix form as

[r— . _‘ N
. L g |- i
S(l - }(ﬁss) - Xﬁ:s -SX&’S - Xa,s -Szqus B S}{q,s h Xe:s + V—l- u Xﬁ,s

-sZ{i,s - Zﬁ,s s(l - Z&,S) - Za,s —SZZ{LS - s(l + Zq,s) - Zg,s iap = {Zé,shp

-sMj - Mg -sMy - My, s2(1 - M) - sM, - M, 1% | Ms
(54)

A decoupled approximation to the short-period mode is obtained by constraining @ to
zero and assuming Z, o and My to be negligible
H

s(l - Zo'z,s) - Za,s —sZ(‘l’S - (1 + Zq,s) ap Zﬁ,s
= 6p (55)
-sMg - My s(l - Mq) - My ap Mg
The decoupled short-period roots are then the roots of
s2 4 ZCspwsps + wspz =0
where
oo Za,qu - Ma(l + Zq,s) (562)
sp ~ . . . .
(- Zgs) (L - M) - Z4,5Mg
1-17Z; -(1-M5)Z - 24 sMy - M3 (1 + Z
2Cspwsp = _( a,S)Mq ( Mq) a’s qss o a( qps) (56b)

(1 - Za,s)(1 - Mg) - 24, sMg

A decoupled approximation to the phugoid mode is obtained by retaining only the zero-
order terms in the moment equation and assuming X('l,s and Z('l,s to be negligible
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s(1 - X s) - Xy s -5X4,s - Xq,s -5Xy,s - Xg,s vt Xs,s
-524 s - Zg,s s(1 - Zg,g) - Za,s -s(1 +Zq,s) - Zg,s[{¥p) = ZﬁsS?% (57)
M=~ -M -M 0 M
i U o 6 | P 5)

The decoupled phugoid roots are the roots of
sz+2§ WpS + Wp2 =0
p~p p

where wp2 and 2{pwp are found by expanding the determinant of the matrix in
equation (57).

Figure 11 presents a comparison of the decoupled root parameters from equa-
tions (55) and (57) with those from the coupled system (eq. (54)) for the elastic airplane
with forward center -of -gravity location at M = 0.8. The coupled and decoupled shori-
period parameters are in good agreement except for those cases in which the short-period
mode was aperiodic., The decoupled phugoid approximation, however, was generally poor
and, in particular, failed to yield the large phugoid magnitude shown by the coupled solu-
tion for the higher dynamic pressures with heavy weight. Observe, however, that the
total damping 2§spwsp + Zprp was well represented by the decoupled solutions at high
dynamic pressure. This fact implies that the coupled system provides a mechanism for
transfer of damping from the phugoid into the short-period mode. Examination of other
simplifications of equation (54) has led to the conclusion that the root~coupling mechanism
is provided primarily through the derivatives Mq and Mg and becomes important when
the numerator of equation (56a) Zg,sMg - Mg(1 + Zq,s) is small.

It should be noted that for the elastic airplane, the inertial contributions to the
derivatives Mg, Zq, Mg, and Zg arising from normal-acceleration effects (egs. (18))
were much larger than the aerodynamic contributions and were responsible for large neg-
ative values of My and Zqg and large positive values of Mg and Zg. As a result,
the value of wspz remained positive (stable) for the lightweight cases and near zero for
the heavyweight cases of figure 11 in spite of the large unstable values of Mg. The
effect of weight on wspz resulted primarily from the larger magnitude of Z, arising
from the reduced mass of the lightweight condition.

Static-Stability Considerations

Static longitudinal stability can be interpreted as the tendency for either speed or
normal acceleration to be restored to its equilibrium value following a disturbance., The
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two types of static stability to be discussed, therefore, will be termed speed stability and
maneuvering stability. The concepts of static margin and maneuver margin have been
used as direct quantitative measures of the two types of static stability. These stability
margins are visualized as the distance from the c.g. to either the neutral point or the
maneuver point where these points are the c.g. locations for which either the speed sta-
bility or the maneuver stability is zero. The stability margins can be quantified, there-
fore, as values of the total derivative dCy, /dCN evaluated under constraints appropriate
to a disturbance in either speed or normal acceleration. Approximate expressions for
the stability margins in terms of the stability derivatives exist in the literature, but their
applicability to elastic airplanes should be examined.

Other measures of static stability express the observable consequences of the inter-
action of static stability with other airplane properties. For example, the undamped nat-
ural frequencies of the phugoid and short-period modes reflect the interaction of the speed
stability and maneuvering stability, respectively, with the inertial properties of the air-
plane. Similarly, the static control parameters 6p/ i and &p / np are measures of
speed stability and maneuvering stability, respectively, relative to control effectiveness.
In the present analysis, the static control parameters are determined from transfer func-
tions obtained from solution of the equations of motion and, along with the stability mar-~
gins, will be utilized in describing the static stability.

The asymptote form of the frequency response amplitude of the ﬁ/ép and np / Op
transfer functions is illustrated in figure 12 for the elastic airplane in the heavy condition
with c.g. at 0.41c and M= 0.8 for five values of {. This form of plot, commonly
termed Bode plot or corner plot, is made up of straight-line segments connecting points
at the pole and zero frequencies of the respective transfer functions. For the cases
shown, the values of logjy of the phugoid frequency range from about -1.25 at the low-
est dynamic pressure to about -0.5 at the highest dynamic pressure. Note that in the
u / dp responses, a plateau exists at frequencies just below the phugoid frequency in which
the amplitude u / 6p is independent of frequency. For the uniform-atmosphere cases,
this amplitude level is equal to the zero-frequency asymptote and can be used to obtain a
static value of the static speed control parameter &p /ﬁ. The value of Gp/ 4 thus
obtained corresponds to a constant-altitude constraint because even though the final alti-
tude following a step control input is different, in general, from the initial altitude, the
altitude change has no effect under the assumption of a uniform atmosphere. The sign
of op /ﬁ is determined from the phase angle of the asymptote form of the frequency
response (which is either 0° or 180°) in this same frequency range.

For the standard-atmosphere cases, the zero-frequency asymptote of i /6p has
little significance because of the long time required for the aircraft motions to approach
the final conditions. The value of 6p/ U corresponding to frequencies just below the
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phugoid frequency, on the other hand, is believed to represent a meaningful measure of

the tendency within a time range measured in minutes for the speed to return to its trim
value under conditions of no control action, that is, no altitude constraint. Thus, a dis-
tinction is drawn between two speed stability indices, both expressed as values of ép/ﬁ.
One, determined from the standard-atmosphere solutions, is a measure of the uncon-
strained speed restoring tendency, and the other, determined from the uniform-atmosphere
solutions, is a measure of the control required to change speed at constant altitude.

The static maneuvering control parameter Op/np is traditionally determined from
solution of a two-degree-of-freedom (decoupled short period) set of equations of motion.
The np / bp frequency response curves identified as "'constant speed' in figure 12 were
obtained from solutions of equation (55) combined with an appropriate form of the normal-
acceleration equation. The asymptote form of the frequency response of np /6p obtained
from the standard-atmosphere and uniform-atmosphere solutions of the complete three-~
degree-of-freedom equations of motion are also shown for comparison. For the lower
three values of dynamic pressure, the levels of ny, /Gp in the frequency range between
the phugoid and short-period frequencies from the standard- and uniform-atmosphere
solutions are identical with the zero-frequency asymptote of the constant-speed solutions.
Note that at these three values of {, the short-period mode is oscillatory and its fre-
quency is well separated from that of the phugoid mode. For the two higher values of q,
the short-period root pair has branched into two real roots, and the frequency range of
the np / 6p plateau between the phugoid roots and the smaller root of the short-period
pair is greatly diminished or nonexistent. The plateau level of np / 0p from the three-
degree-of-freedom solution is no longer identical to the zero-frequency asymptote of the
two-degree-of-freedom solution. While the static maneuvering control parameter 6p /np
obtained from the three-degree-of-freedom solution is probably more representative of
the actual case than that from the constant-speed solution, this distinction may be of only
academic interest when the large dynamic instability of the phugoid mode for these high-
dynamic-pressure cases (fig. 10) is recalled.

The values of Op/ 4 and dp /np obtained from the appropriate three-degree-of-
freedom transfer functions by the procedure just described are presented in figure 13 for
the rigid airplane and in figure 14 for the elastic airplane. In a few cases, the pole-zero
configurations of the transfer functions were such that the appropriate plateaus in the fre-
quency response curves did not exist, and these points are omitted from figures 13 and 14.
The assumption of a locally uniform atmosphere had little effect on the maneuver control
parameter dp / np but showed a destabilizing effect on the speed control parameter 6p/ 4,
particularly at supersonic speed. This result implies that the unconstrained speed-
restoring tendency, indicated by the standard-atmosphere results, is significantly more
stable than would be inferred from measurements of the control gradient with speed at
constant altitude, as indicated by the uniform-atmosphere results.
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The static speed control parameter and maneuvering control parameter for the
rigid airplane reflect the expected reduction in static stability with rearward center-of-
gravity movement and increase in control sensitivity with increasing q. Comparison
of figures 13 and 14 reveals several manifestations of aeroelasticity. At low dynamic
pressure, an aeroelastic reduction in static stability is indicated by reduced magnitudes
of both 6p/ 4 and 6p/ np. The subsequent increase in the magnitude of &p /np at high
dynamic pressures is related to the aeroelastic loss in the control efiectiveness deriva-
tive Cuy 5 The aeroelastic loss in Cy g 1s not sufficient, however, to explain the large
increase in 6p/ﬁ at high dynamic pressures shown in figure 14, particularly when the
large destabilizing aeroelastic effect on the partial derivative 8Cyy, / 9a shown in fig-
ure 7 is recalled.

Further insight into the nature of aeroelastic effects on static stability may be
gained by an examination of approximate forms relating static margin and maneuver
margin to the stability derivatives. If the atmosphere is assumed to be locally uniform,
the reference flight condition to be straight and level with «@; small, and the perturbed
flight condition to be steady trimmed flight along a curved path, then

= a c
Cn= CN,I + apCNa + uCNﬁ +qp WI CNq + 6pCN5

Cm =0 = apCry, + iCmy +9p 2%—1 Cmg + 6pCmy,

Also,
nw -~ W ~
CN 55 qIS(nl +np>( 24)
Vq
"= g,

Thus, by substitution

- goc W _
apCNa + u(ZCN,l + CNﬁ) + np<-271- CNq - q—ls> + 6pCN5 =0 (58a)
_ S 8o€ _

The stability margins can be expressed as values of the total derivative dC, /dCN
for the untrimmed perturbed state (Cm # 0) obtained by constraining 6p to zero. The

43



form of an additional constraint is used to distinguish between static margin and maneu-
ver margin, For level flight at varying speed, the constraint np =0 1is imposed and

Cm-

dc C CNg

Static margin = | —1& =], u - u (592)

aCy Cx 2Cn.1)  2Cn.1
np,=6p=0 a ? ’

Similarly, for maneuvering flight at constant speed, U is constrained to zero and

. _[dCpy, _Cm, g,pSc gopSc
Maneuver margin = <@>A " Cn < T AW CNq W Cmq (59b)
u=5p=0 o

Alternatively, by constraining either np or i to zero, equations (58) can be
solved directly for the static control parameters

6 " »
ﬁ_p _ 2CN,1 Static margm (60a)
Cma'CNécma
Ng
6 .
HE _ -Ws Maneuver ma(.:rgm (60b)
] ) CNa

The approximations provided by equations (60) are plotted in figures 13 and 14 and, in
nearly all cases, agree very well with the results from the transfer function solutions for
the uniform-atmosphere cases. Thus, the mechanism responsible for the extreme values
of 6p/ u observed for the elastic airplane at the highest dynamic pressure must be
embodied in equations (59) and (60). Equations (60) imply that the aeroelastic reduction
in Cmg should affect both 6p/ 4 and op / np in a similar fashion. It might be noted

in passing that the combined control effectiveness parameter Cp, 5" CN(\3 CN& was
a
found to be independent of center-of-gravity position even for the elastic airplane.

The difference between the trends of 6p/ i and 5p / np with dynamic pressure
arises from the difference between the static margin and maneuver margin, These sta-
bility margins evaluated from equations (59) are shown for the rigid airplane in figure 15
and for the elastic airplane in figure 16, Values of Cp, o / CNa’ which is indicative of the
distance from the center of gravity to the aerodynamic center, are also shown to demon-
strate the contribution of CNﬁ and Cmﬁ to the static margin and the contribution of
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Cyn, and Cmq to the maneuver margin. Considering first the rigid airplane (fig. 15),
the maneuver margin is shown to be more negative (stable) than Cy o / CN,» Particularly
at the subsonic speed. The generally stabilizing contribution of | Cmq to the maneuver
margin is thoroughly documented in the literature. The contributions of the @ deriva-
tives to the static margin are not as well documented but are shown by figure 15 to be
significant for the cases considered. For the rigid airplane, the i derivatives arise
only from the effects of Mach number perturbation. Their contribution to the static mar-
gin is generally stabilizing at M = 2.7 but destabilizing at M = 0.8. For the subsonic
cases with the rearward c.g. location, the static margin is shown to be positive (unstable)
in spite of the value of Cmy / CN, of -0.03. This result is compatible with the existence
of a divergent root of the phugoid pair shown for the uniform-atmosphere cases in fig-
ure 9(b). Figure 15 also shows that the change in static margin with a change in c.g. loca-

tion is significantly different from the change in (—’5) . This result arises primarily

c
c.g.
from the effect of Cp~. The contribution of C to the maneuver margin was found to

be much less significant.

For the elastic airplane (fig. 16), the values of C, o / CNa became highly positive
at high dynamic pressure. The 11 derivatives now include the aeroelastic effects arising
from dynamic-pressure perturbations (eqs. (18)) which were found to predominate over the
Mach number effects. Similarly, the q derivatives include the aeroelastic effects from
n, which were much larger than the direct aerodynamic effects of pitching velocity. The
resulting contributions of Cmf1 to static margin and of Cmq to maneuver margin were
always stabilizing. Moreover, the effects of CNﬁ and CNq were significant and always
acted to reduce the contribution of C,, o /CN o to the stability margins. In particular,
for the highest dynamic pressure at M = 0.8, the values of CNﬁ /ZCN, 1 were of the order
of -1; the contribution of Cy, o / CN o in equation (59a) was therefore of little significance
and the static margin became extremely stable, leading to the large values of 6p/ i pre-
viously noted.

Figure 16 also shows that as dynamic pressure was increased, the stability margins
became less sensitive to c.g. location, and the trend of static margin with c.g. location
actually reversed at high dynamic pressures for M = 0.8. Furthermore, calculations
made at intermediate c.g. locations showed that the variations of both static margin and
maneuver margin with c.g. location became nonlinear in such a manner as to cast doubt
on the existence of a neutral point or maneuver point.

Added confidence in the validity of equations (59) is gained by correlating the results
shown in figure 16 with the characteristic roots for the uniform-atmosphere cases of fig-
ure 10, Note that a divergent real root is shown in figure 10 for each case for which
either the static margin or maneuver margin is unstable as shown in figure 16. Further-
more, the appearance of an aperiodic short-period mode at intermediate values of dynamic -
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pressure for the lightweight, rearward c.g., subsonic condition (fig. 10(b)) appears to be
related to the minimum in the stable values of maneuver margin shown in figure 16(a) at
intermediate values of dynamic pressure for the corresponding condition. This latter
correlation is suggested by the similarity between the form of equation (59b) for maneu-
ver margin and that of equation (56a) for wspz.

Effect of Dynamic-Pressure Derivatives

One of the departures from past practice embodied in the present development is
the inclusion of the aeroelastic effects of dynamic-pressure perturbations in the stability
derivatives with respect to 1 wused in the three-degree-of-freedom dynamic analysis.
To illustrate the significance of this feature, stability analyses were made for a single
(forward) c.g. location with the dynamic-pressure contribution to the derivatives X,

Zgi, and My omitted. The aeroelastically corrected Mach number contributions were
included, however. The resulting characteristic stability roots are compared in figure 17
with those from the more complete analyses under the assumption of a locally uniform
atmosphere. The omission of the § contribution had little effect on the short-period
roots except for those cases in which coupling between the short-period and phugoid roots
resulted in a coupled oscillatory mode, The omission had a strong destabilizing effect on
the phugoid mode, however, particularly for the subsonic conditions, and resulted in an
aperiodic divergence for all but the lowest dynamic pressures. The resulting effect on |
the static control parameters is shown in figure 18 by the curves faired with solid lines.
As would be expected from the characteristic roots, omission of the q contribution

had little effect on the maneuvering control parameter 6p /np but resulted in strongly
unstable values of the speed control parameter 5p /ﬁ.

Alternative Formulations for Normal-Acceleration Contribution

In the present formulation, the effects of aeroelastic distortion due to normal accel-
eration are embaodied implicitly in the stability derivatives as indicated by the terms in
equations (18) involving partial derivatives with respect to n. One alternative formula-
tion which has been used in some segments of the industry results from omitting these
terms from the stability derivatives defined by equations (18) and retaining derivatives
with respect to n as explicit coupling terms in the three force and moment equations
of motion, The set of equations of motion must then include an additional equation such
as equation (34) to define the role of these coupling terms in the dynamic solution. The
resulting solution is identical to that from the present formulation, but approximate
expressions for static stability and control parameters would appear more complicated
than those presented herein.
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Another alternative formulation is that denoted in reference 2 as "Formulation I"
and in reference 3 as the '"Direct Formulation.” In these formulations, the normal-
acceleration contributions are broken down into inertial derivatives with respect to
variables representing linear acceleration W, centrifugal acceleration q, and gravity
orientation 6. These inertial derivatives appear in the equations of motion along with
aerodynamic derivatives representative of the '"zero mass' elastic airplane. The
dynamic solution of these equations is equivalent in all important respects to that from
the present formulation with the reservation that the contribution of dynamic-pressure
perturbations to the forward-speed derivatives is not included in the dynamic formula-
tions of references 2 and 3. Although the inertial derivatives appear in combination with
aerodynamic derivatives in the equations of motion, it is not recognized in references 2
and 3 that these combined derivatives can be considered as stability derivatives generally
applicable to static stability, control, and performance analysis, as well as dynamic
analysis.

The final formulation to be discussed is that denoted in reference 2 as "Formula-~
tion II" and in reference 3 as the "Indirect Formulation.' It is stated in those references
that this formulation "represents what has been the standard method of accounting for
inertial effects, or as it is frequently called, inertial relief." The derivation of this for-
mulation makes use of the expression

CL,p

(61)
C1,1

n=1+np=1+

Note that this expression implies that n is the load factor rather than the component of
acceleration normal to a structural reference plane. Note also that this expression is
valid only for constant dynamic pressure.

To describe the concept of the indirect formulation in the notation of the present
paper,

8C,
CL = CL,]. + z pp,k —apk (62&)
k=1
& 8Cpy
Cm = Cm’l + Z pp,k W— (62b)
k=1 k
K
BCD
CD = CD,]. + z pp,k E (620)
=1
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where p) is a set of K physical variables having n as a member. The indirect for-
mulation makes use of equation (61) to show that the following expressions are equivalent
to equations (62):

K-1 3CL
' B,
CL=Cp,1+ Z Pp Xk ) (632)
k=1 -
CL, 1 an
K1 8 0y,
3Cm on - 8pk
Cm=Cm,1+ Pp k 50 + 5Cy) (63Db)
k=l CL,1"
K-1 3CD BCL
aCD an apk
Cp=Cp,1+ Z Ppk [5p * 5C (63c)
k=1 kK ¢ -4
L,1 an

where n is not included in the set of K - 1 physical variables Py The expressions
in parentheses in equations (63) can then be transformed into stability derivatives with
respect to the motion variables by a procedure analogous to that used in the present
formulation.

The indirect formulation was applied to the forward c.g., uniform-atmosphere cases
of the present analysis. The resulting characteristic roots are compared with those from
the present formulation in figure 19, and the static control parameters obtained from the
transfer function solutions are shown in figure 18. Although the contributions of dynamic-
pressure perturbation were not included in the indirect formulation of references 2 and 3,
it is clear from equations (63) that q could be either included in or excluded from the
set of physical variables, Both conditions are represented by the results given in fig-
ures 18 and 19. The effects of omitting the q contribution in the indirect formulation
are similar to the effects already discussed relative to the present formulation.

The indirect formulation predicts a significantly greater speed stability than the
present formulation as evidenced by larger values of both the speed control parameter
Gp/ﬁ and the phugoid frequency. This discrepancy of speed-related characteristics
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should be anticipated from the invalidity of equation (61) under conditions of varying
dynamic pressure. A more subtle inadequacy of the indirect formulation is revealed by
observing that although the maneuver control parameter 5p /np is accurately predicted,
the magnitude of the short-period roots is consistently underpredicted. This discrepancy
is apparently related to the inappropriate application of inertial relief, under the indirect
formulation, to all derivatives including those describing control effectiveness. '

CONCLUDING REMARKS

A set of longitudinal stability derivatives has been defined, and the corresponding
equations of motion formulated, applicable to the analysis of longitudinal static and
dynamic Stability, control, and performance of elastic airplanes. This development is
subject to the assumptions of small perturbations from a steady reference flight condition,
structural deflection constrained to a direction normal to a structural reference plane,
and the quasi-steady aeroelastic assumption of structural deflections proportional to
applied loads. The development described herein avoids any constraint on the forward-
speed degree of freedom, and the resulting stability derivatives exhibit two important
departures from past practice: (1) The aeroelastic contributions of dynamic-pressure
perturbations are included, and (2) the aercelastic contributions of normal acceleration
appear primarily in the derivatives with respect to pitching velocity and angle-of-attack
rate and, for an unaccelerated reference flight condition, do not influence the derivatives
with respect to angle of attack.

Approximate expressions for the static and maneuvering stability margin and con-
trol parameters in terms of the stability derivatives defined herein have been shown by
means of illustrative calculations to correlate well with the characteristic stability roots
and response to control inputs calculated by solution of the dynamic equations of motion.
Some results of illustrative analyses of an elastic airplane cast doubt on the general exis-
tence of a neutral point or maneuver point where these points are defined as center-of-
gravity locations corresponding to zero static margin or maneuver margin, respectively.
Some of the results for an elastic airplane at high dynamic pressure indicate that for
stable values of both the static margin and maneuver margin, as the maneuver margin
becomes small, coupling between the short-period and the phugoid modes can result in a
strongly unstable phugoid oscillation at a significantly increased frequency. Further
increases in phugoid frequency result from consideration of the variation of atmospheric
properties with altitude.

The present formulation of the longitudinal stability and control problem for elastic
airplanes is shown to be more complete than several alternative formulations, and one
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commonly used alternative is shown to yield significantly inaccurate predictions of not
only the speed stability and phugoid characteristics, but also the short-period frequency

and damping.
Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., January 21, 1972,
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APPENDIX

A FORTRAN PROGRAM FOR CALCULATING LONGITUDINAL STABILITY
DERIVATIVES OF ELASTIC OR RIGID AIRPLANES

The FORTRAN program described herein calculates the longitudinal stability deriv-
atives of an elastic airplane using the procedure outlined in the section of this paper enti-
tled ""Calculation of Stability Derivatives." The aerodynamic and structural influence-
coefficient matrices and the airplane jig shape are not calculated in the program but must
be supplied as inputs. The program is written in CDC FORTRAN IV, version 2.3 to run
on Control Data 6000 series computers with the SCOPE 3.0 operating system and library
tape. The statements in the program most likely to require change to run on other oper-
ating systems are those calling the library subroutine MATRIX, which is used in this
program only for matrix multiplication and inversion. The program is dimensioned to
accommodate up to 120 panels on one side of the aircraft plane of symmetry and requires
a field length of approximately 140 000g words. Input and output data are in U.S. Cus-
tomary Units.

Input Data

The force sign convention used in the program is such that positive forces act in
the negative Z-direction. The elements of both the aerodynamic and the structural
matrices, therefore, have signs opposite to those of the [A] and [S] matrices as
defined in the body of this paper. Units of the matrix elements are feet” for the l}\]
matrix and 1/pound for the [S] matrix. '

Tape inputs.- TAPE 1 must contain the elements of three aerodynamic influence-
coefficient matrices: The first corresponds to the nominal Mach number AM, the sec-
ond to a slightly higher Mach number AM + DM, and the third to a slightly lower Mach
number AM - DM. A value of DM of about 2 to 4 percent of AM is suggested. Each
matrix has dimensions M X M, where M is the number of panels on one side of the air-
craft plane of symmetry. The matrix elements are arranged in the following order:
A(1,1), A(1,2), . . ., A(1,M), A(2,1), . . ., A(2,M), . . ., A(M,M), where the first index is
the aerodynamic control point (slope point) index and the second is the load point index,
No end-of-file code is to be used between successive matrices,

TAPE 2 must contain the elements of two structural slope influence-coefficient
matrices: The first relates slopes at slope points to unit loads at load points, and the
second relates slopes at load points to unit loads at load points. Each matrix has dimen-
sions M X M, and the matrix elements are arranged in order: S(1,1), S(1,2), . . .,
S(2,M), . . ., S(M,M), where the first index is the slope point index and the second is the’
load point index. No end-of-file code is to be used between the two matrices.
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APPENDIX -~ Continued

Card inputs. - The program is organized to execute multiple cases by use of nested
DO loops. The outer loop provides for various center-of-gravity locations, and succes-
sive inner loops provide for various airplane weights at each center of gravity, various
dynamic pressures at each weight, and various load factors at each dynamic pressure.
Level 1 input cards apply to all cases and are read once, Level 2 cards must be supplied
for each center of gravity, level 3 for each weight and center of gravity, and level 4 for
each dynamic pressure, weight, and center of gravity.

Level 1
Card 1, Format(3I1,213,5F10.0)

IFLEX Set 1 for elastié case, requires TAPE 1 and TAPE 2, Set 0 for rigid case,
requires TAPE 1 only.

LIST Set 1 for output listing of elastic air loads and flexible slope increments
due to jig shape, alpha, delta, and normal acceleration and total slopes
for reference flight condition. Set 0 to delete above listings from output.

LFT Set 1 for banked-turn reference flight condition. Set 0 for wings-level
reference flight condition.

M number of panels on one side of aircraft plane of symmetry

NC number of center-of-gravity locations

AM Mach number of reference flight condition

DM Mach number increment used in preparing TAPE 1

SREF reference wing area, feet?

CBAR reference chord, feet

CAF increment in axial-force coefficient (skin friction, wave drag due to volume,

etc.) to be added to that calculated from pressures normal to mean cam-
ber surface.

Each of the following arrays is required in format (8F¥10.0), I ranges from 1 to M:
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TSR(I, 1)

TSR(I, 3)

TLRI(I)

TLRD(I)

XSO(1)

XLO(I)

APPENDIX - Continued

mean-camber -surface slope at control point I due to jig shape, {e]}, radians

increment in mean-camber -surface slope at control point I due to unit 9,
{ea}, radians

mean-camber-surface slope at load point I due to jig shape, {ej,f}, radians

increment in mean-camber -surface slope at load point I due to unit §,
{eé,f} , radians

x-coordinate of slope point I from nominal origin, X positive forward, feet

x-coordinate of load point I, feet

Level 2
Card 1, Format(13,¥10.0)

Nw

XCcG

number of airplane weights

x-coordinate of center of gravity from nominal origin, X positive forward,
feet

Level 3

Card 1, Format(13,4F10.0)

NQ

w

Yi

Y1

Y2

number of dynamic pressures

airplane weight, pounds

moment of inertia in pitch, Iy, slug-feet2

(IZ - IX)/ Iy (A value of 1.0 is appropriate if the actual value is unknown.)

Ixy /IY (A value of 0. is appropriate if the actual value is unknown.)

The following array is required only if IFLEX has been set to 1, format (6F12.0), I ranges

from 1 to M:

FI(T)

weight assigned to panel I, assumed to be located at load point I, pounds
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Level 4
Card 1, Format(13,6 F10.0)

NN number of load-factor values

Q dynamic pressure in reference flight condition, pounds/foot2

v true airplane velocity in reference flight condition, feet/second
G gravity accelezfation in reference flight condition, feet/second2
RHO air density in reference flight condition, Py slugs/foot3
RHOH (g%)/p 1 1/foot

AH (%) / ay, 1/foot

Card(s) 2, Format(8F10.0)

FIL(I) load factor in reference flight condition, I ranges from 1 to NN (Note that
FL = G/32.174 for a straight, level reference condition.)

Output Data

Program output is listed in two parts. The first part is identified by the values of
Mach number, center-of-gravity location, weight, and dynamic pressure read in as input.
This part presents a tabulation over all panel load points of the aerodynamic normal force
divided by dynamic pressure and the flexible increment in mean-camber-surface slope
produced by the jig shape and by unit values of angle of attack, control deflection, and
normal acceleration.

The second part is repeated for each input value of load factor and presents data in
five groups identified as trim values, derivative contributions, stability derivatives, static
parameters, and total trim condition slopes. The trim values define the reference flight
condition and include Cp 1, CN,1, Cm,1, @1, 61, 61, ¢, ny, and qqc / 2V along
with the number of iterations used to solve the nonlinear reference equations. The deriv-
ative contributions include the increments in Cy and Cp, due to jig shape and the par-
tial derivatives of Cp, Cn, and Cp, with respectto «, 6, qc/2V, n, 4, M, and 4.
The stability derivatives are presented in both coefficient form (CA, CN, and Cm) and .

A

dimensional form (X, Z, and M) as derivatives of these quantities with respect to 4, G,

54



APPENDIX — Continued

@, &, 6, q(or gc/2V inthe case of the coefficient derivatives), q, 5, and h.
Unsteady aerodynamic effects are not considered in the program, and therefore the val-
ues of the derivatives with respect to 111, @, and q reflect only the aeroelastic effects
arising from inertial loading. The static parameters include the stability derivative
ratio Cr, / CN, and the values of static margin, maneuver margin, 8p/d, and 8p/ny
calculated from equations (59) and (60) of this paper. The mean-camber-surface slopes
in the reference flight condition are tabulated over all panel slope points and load points.

The units of all output quantities not defined as input data are as defined in the main
text of this paper except that normal force per unit dynamic pressure is in feet2 and alti-
tude is in feet.

Sample Cases

Listings of input data cards and program output for two sample cases are given on
the following pages. Both cases correspond to the airplane used for the illustrative
analysis of this paper flying at its supersonic design condition. Sample case 1 is for
the rigid airplane, and sample case 2 is for the flexible airplane. The nominal origin
of x-coordinates is at 0.33c. The airplane is represented by 110 panels numbered con-
secutively from leading edge to trailing edge in rows progressing from root to tip. The
supersonic paneling arrangement includes 11 chordwise rows with 10 panels per row.
Data tabulated over all panels are listed in the order of panel numbers.

Program compilation and execution required 7 seconds of central processor time
for sample case 1 and 48 seconds for sample case 2.
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INPUT CATA CARDS — SAMPLE CASE 1

co

LUMN

NU#¥BE

R

€00C00C00111111111122222222223333333323444544444645555555555666666666677777777778
12345678501234567890123456789012345678901234567860123456789C12345678901234567890

010110 12

-

.002C858
.0158222
«022€6214
.0093366
.01422¢%8
«064€976
«002£083
.C091£25
. 02424954
.0571262
«066EC34

o7

.£217330
+0£40468
«02C6E50
«0117246
+CCEL9E8
«0367379
+0040618
«C057909
.02C8992
.0479388
«CE16627

~.0355413 -.0340052
~.0442€617 -.0445019
~e043€6CS -.0426609

0.
0.
Q.
C.
0.
0.
0.
Q.
0.
C.
0.
C.
o.
Q.

0.
O.
C.
C.
0.
Q.
C.
0.
0.
Q.
Q0.
0.
0.
C.

.043€€09
+004€529
.0248220
«0075€25
.0182140
«Q0E€€5€8
.002Cs07
«0105€27
.0255958
«0612408
«06379C6
.03€62429
. 0441703
«0436€C9

56

0.
Q.
G.
Q.
C.
0.
0.
a.
C.
0.
0.
Ce
O.
C.

.1221082
+0542514
«0224555
«C111000

1 9
+ 0646896

-.C173182
«0164318
.0128243

-.COCESST

-.0204279

-.0768725

-<0031599

-.017€371

-.0421487

-.0569024

-+.0292534

-.044€210

-.0436609

0.

0.

O.

0.

0.

0.

0.

<4627

0.

0.

0.

0.

C.

0.
«0554€99

-e 04046569
0186951
«0127531

-.CC839998 -.0021476
~.C458547 -.026C4390

«CC25243
.CC69518

-+0961399
-.0035608

~.0219175 -.01856&72
~.04873982 ~-. 0435456
-.C650822 -.0602126

«C343914
«0444051

-.01761354
-+.0445780

~«C436609 -.0436609

O.
0.
O.
C.
0.
C.
G.
0.
C.
0.
Ce
0.
0.
0.

o.
0.
0.
0.
0.
0.
0.
« 4627
0.
0.
Q.
0.
0.
0.

932.37 1
«0721554
+0C54¢€53
«0115639
.0128901
.C028021

=.0144045
~« 0474848
-.0009936
-.0140€87
-.0357561
-.05C1564
-.0403315
-.044€31¢C
-.0436€09

0.

0.

C.

C.

C.

0.

C.

826

C.

0.

0.

0.

Q.

0.
«075519S

-.0C31124
01371778
«0132556
«0012952

-.C171017

-.058572¢C

-.0018017

-.0153701

-.0370547

-.0542942

-.0369715

-.0446094

~.0436€09

c.

0.

0.

0.

0.

C.

C.

.826

0.

C.

[

C.

0.

0.

12.€¢18 .0C532

«C677656
.C1€€327

+0584697
»0223163

-.0407757 -.C091252

+CLL1EEEL
«£052965
~.CCB85829
~aC214G48
-.0851170
~.C112759
-.0212538
~.04£4143
~.0423783
.CCE2823
~.0436609
0.
0.
C.
«0522
C.
C.
C.

.0102973
«0064772

0391723
+0250962
«0024986
«0523926
.0073860

-.0049710 -.0015805

0.
0.
Q.
o4
C.
0.
0.

C. 0.

849

Q.

C.

Ce.

C.

C.
.€738231
«C132£42

-.CE1EC84
«Cl2¢€467
.CO0EC137

-.C105445

-.(374848

-.(883117

-.0110¢€2¢

-.C20E534

-.C4EC5S5S

-.C420562
.02%2262

-.C436609

1.

« 0236675
«C639445
0093210
.0292486
.0432134
0430595
«0255481
0436609

59

0

2738

0.
0.
O.
0.

0.
0.
0.
ol
0.
a.
0.
0.

.C657603
.0208076
«0174436
.0110408
.C060814
.0065365
+ 0260446
.C722898
.0C099270
.0283116
0454076
«0428395
«0117544
+04366C9

59

«0175863
«0418934
«0979577
«0267000
«0397698
« 0435389

0218184
.0253127
0047684
.0241893
.0080724
.00Ce318
.0126706
.0302575
«C725046
.C228263
.0373008
+ 0438673

-+0370163 -.043£609

0.
0.
C.
O.

3725

Q.
0.
G.
0.

.158

0.
0.

0.
0.
0.
C.

»0510243
.0247195
.0048858
. 0688493
«0071681
«0026051
. 0201491
«0505014
« 0844228
«0269155
.0415073
«0434637
«0343573

«3725

Q.
0.
C.

«758

0.
0.
0.

0.
0.
0.
a.

« 734

0.
Q.
0.
0.

«758

0.
Q.

0.
0.
0.
0.
.7
0.
0.
0.
0.
.7
O.
O.
C.

«0254630
« 0260645
0023824
0334654
«C078364
+0000706
«C140063
«0335301
.C872726
.023038¢
0383499
«0437361
«0437S26

34

58

} Edes

} Edes,T

> €§,f
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136.718
-72.615
~26.511
-8.841
1.256
3.947
-£E.7€1
~3T7.7€6
~5C.€EQ
~55.526
-GE.429
~33.Cl4
-88.€52
-32.148
121.227
-%4.42)
-20.278
-3.110
£€.238
£.220
~62.€51
~£4,2¢8
-£2.832
~-57.5¢4
-€4,884
~87.£41
-87.7¢3
-51.176
1-3.¢€22
l47222C.
1536.£15
«8337¢53

E4.264
-6£.272
=41l.244
-21.2590

~%.323

-4.892
-15.553
-£4,582
~€1.269
-£2.962
-€5.252
~51.837
-5C.834
-92.306

G€.029
~87.640
-34.724
-15.543

-4.3£56

-.€325
~71.557
-€l.554
~5E.477
=€l1.€71
-67.728
-G60.486
~B8S.7€4
~-52.383

425é6CS515.
2cl3.€2

61.810

55.089
-55.,577
-33.,660
-19.501
-13.730
-14,613
-72.177
-66.877
~67.998
-72.C75
-76.9£3
-92.816
-C4,.455

74.820

65.759
=-45.(90
-27.975
-14.671

=-6.520
-11.017
-68.6819
-£4,122
=65.759
~7C.573
-71£.690
-51.775
-33.539

1.
21.573
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39.356

44,755
=65.514
-46.069
=-30.430
~22.569
-21.809
-79.373
-12.486
-72.C3¢
-74.898
-78.944
-S54.7¢7
-95.623

51.612

£l.402
=63.448
-40,498
=2£.57¢
-18.366
~-18.242
=T76.C44
~6%.767
-69.846
~-73.418
~77.701
-63.7€¢%
-54.796

0.

16.901

3C.422

40.79¢€
-EE.4TE
~41.059
-21.407
=29.C04
-32,227
~78.094
-76.C71
-77.722
-8C.52¢

"=87.E14

-€6.782
28,4C2
31.Ca47
464,620

-52.841

~3¢.176

~27.231

-25.46E

=-3C.251

-78.412

-73.532

-7€.2€2

-7¢.711

-86.35C

-9€.002

-5.553
1€¢.088
28,387
-70.888
-51.638
-40.246
-36.200
-28.835
-83,703
-80.1C7
-80.545
-82.9C17
-88.672
-57.54C
5,165
224551
34.188
-£5.,272
-46,783
=26.05¢
=32.692
-25.8%9¢
-81.058
~-78.020
=79.1C7
-8l.722
-87.557
-57.209

«CCC174£5 -, CCCC4T5 Cu

-28.007
1.756
15.577
22.414
-62,217
-49,084
-43,395
~44.4643
-51.854
~84,143
~-83.368
~84.889
~-89.831

-13.014
B«335
21.755
27.446
-57.388
-44,961
-39.918
-41,541
-49.410
-82.107
-81.952
-83,732
-38.7632

-50.461 )
-12.578
2.568
11.825
-T2.75¢&
-57.522
-5C.591
-50.052
~5£.890
-3€.176
-8&.191
~86.871
-9C.S$89

-41.223 ﬁ
-€.C21

G.322
lé.842
-67.992
~532.,826
-647.143
-47.187
=-53.437
-86.195
-84.796
~85.743
-85.570

-

- xe

> Level 1

Level 2
Level 3

Level k4
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APPENDIX - Continued

PROGRAM OUTPUT - SAMPLE CASE 1

AEROELASTIC CERIVATIVES, M= 2,700, XCG= -9,823, W= 472500, QBAR= 596.62

ELASTIC AIRLOADS PER Q DUE TC JIG SHAPE

4.405167 5.,086942 6.407287 5.500033 4.137748 1.658043 -1.973766 -4.281655
-8.101925 -5.825629 2.066525 3.560051 3.310008 2.858762 2.323882 1.333546
«371886 ~+545671 -1.497147 ~-2.352072 ~-<653648 3.177942 2.440543 2.408191
20124071 1.518737 1.015405 «307909 —e344136 -+349054 -2.276323 1.950561
1.846014 2.,000352 1.950671 1.554878 1.197829 « 774787 «332770 -.040082
-3.577497 «861491 1.613613 1.468820 l.527863 1.432235 1.180391 «962509
«T49346 «489162 ~4,567554 «003242 1.076597 1.013636 1.113711 l.216811
1.157658 .988819 «800750 «650775 -5.144581 -1l.041628 «626273 «865549
« 794494 «TCT317 « 726670 « 774167 . 737781 +6008C2 =5.457239 -1.526993
-+306045 «2€3C€2 378186 «378769 «320750 «242784 «2952039 «434817
~3,965022 -2,247014 -1.251506 -.588971 -.15C487 « 135972 «244314 «231376
«162971 «085693 -1.451682 ~2.063045 -1.750670 ~1.370496 -1.039768 -.781034
-e522849 -e2892G9 -e116487 -4023573 «(GS5301 -e623199 ~e926234 -1.128723
-1.165501 -1.117301 -1.034143 —.942978 -+849150 - 752640

ELASTIC AIRLCADS PER Q OUE TC ALPHA

149.818868 99.252230 994386244 1164837692 126.397336 134.199253 137.049141 134.909163
104.610133 52.€49335 170.638300 92.936603 78.378010 75.325785 74.677153 75.125170
75.136618 T4.6E5779 724390064 66.481118 180.308611 190,213469 81.7614J4 T4¢373917
71.263026 70.013380 68.565508 68.104686 66.901651 64.536145 183,797293 102.669730
82.799433 72.631784 6T7.249463 654149742 63.293960 61576594 60,865743 59.,815473
182.627076 102.495503 81.837039 70.107545 63.472436 59.,577503 58.183180 56.485101
54.687695 53.506766 177.915649 100.487495 77.388528 66.896804 59.962141 55.245622
52.180692 50.892719 49.937338 48.327395 169.,214616 95,769864 71.727225 61.,029331
55.441732 51.305983 47.478609 $4,581055 43.062685 43.184773 155,538858 88.224507
654643622 52.061183 45,853602 45.481612 44.911300 43,635639 41.604817 39.146471
109.312972 78.634141 60.797135 49.212877 41.186243 34.759944 32.125564 31.094826
30.735940 30.,495578 58.,849529 644530916 57.373415 49.801898 43.254497 38.002822
33.034518 28.6569C7 25.071517 22.743085 26.594636 28.584089 30.718988 32.887397
33.654015 32.852887 31.404300 29.787274 28.086723 264314033

ELASTIC AIRLOADS PER Q@ OUE TO DELTA

0.000000 0.000000 0.000000 0.000000 €.000000 0.000900 2.000029 «410456
3.796512 5.776272 0.G600000 0.200000 0.000000 0.020000 0.000009 0.00000N
0.000C00 «036935 « 703736 8.182117 0.0C0000 0.000200 0.71000929 0.000007
0.000000 0.0C0000 0.000000 .008863 5.904510 53.,047485 0.000029 0.000000
0.000000 0.000000 0.000000 0.0000C0 ¢.,000000 001893 32.852237 50.013243
0.000000 n.000000 0.000000 0.0009%0¢C 0.000000 0.0002CNH 0.0020001 .000347
4.269627 18.657504 0.00C€000 0.000000 0.000000 0,0000G0 0.000022 0.200009
0.000000 .000053 31.418286 48.231617 0.0000N00 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 +009005 49.519799 52.151664 7.0000239 0.000009

0.000000 0.0C0000 0.000000 0.000000 0.000000 12.447534 30.458912 30.913052
0.000000 2.000000 0.000000 0.000000 ¢.000009 0.002200 0.020000 0.000007

«596008 2.451511 0.000000 0.000000 0.020000 0.000000 0.000000 0.0000C0D
0.000000 0.000000 G.000000 0.000000 0.000000 3.000000 0.000020 0.060000
0.000000 0.000C00 0.C00000 0.000000 0.0cco00 0.1%0000



CA
CH

Ca
CN
CK

CM
ST
HA
DE
DE

LOAD FACTOR

TRIM V
CA = 00475

= 99375
ALUES ( 2
9 ALPHA

CN = «079145 DELTA =
=

CM = 0.00000

0 THETA

APPENDIX — Continued

ITERATIONS)
«048506 PHI = 0.0
«000002 ANs; G = 9
«048506 Qc/2v = -0

DERIVATIVE CONTRIBUTIONS

00000
92584
00000

JIG SHAPE ALPHA OELTA Qc/av ANy, G
-.0301833 «0031426 -0038041 ¢.000000
«003698 1.555408 «088980 +672663 0. 000000
«009699 ~+.199950 -.049690 -.539630 0.000000
STABILITY DERIVATIVES
u uooT ALPHA ALPHA DOT THETA
.0018134 -0.0000000 -.0301833 -0.0000000 -0C.000000
—+049926 -0.000000 1.555408 -0.000000 -2.000000
-008535 -0.000000 —+1999%0 -0.000000 -0.000000
—e001749 -0.000000 004660 0.000000 -0.000000
-.016729 -0.000000 -«240115 0.000000 -0. 000000
«134113 0.000000 -3.141995 0.000000 0.000000
STATIC PARAMETERS
ALPHA/CN ALPHA = -,128552
ATIC MARGIN = =,141924
NEUVER MARGIN = -.130062
LTA/U = «587300
LTA/AN, G = =,271118
TOTAL TRIM CONDITION SLOPES AT SLOPE POINTS
~-.0020858 «0217330 +0649896 «0721554 +0677656
~.0198222 -.0640468 -.0173182 «0054653 «0166327
0236214 0206850 .0164318 +0115639 -.0407757
«0093366 +0117246 0128243 .0128901 0118662
-.0143258 -«0061958 --0008557 «0028021 »0053965
~«0646976 -.0367379 -+0204279 =«0144045 ~-.0089829
«0026083 + 0040618 -e0768725 ~«0474848 ~«0314948
~.0091525 ~.0057909 —+0031590 ~.0009919 -.0851170
—e0242494 -.0208992 ~.0176371 -.0140687 -.0112742
-+0571262 -+0479388 —e0421487 -«0357561 -.0312538
-.0668034 -+0616627 -.0569024 -.0507564 —e0464143
~«0355413 -+ 0340052 ~+0292534 -+0403315 -e0423783
—+0442617 =+ 0445019 -.0446310 ~+0446310 «0063823
-<.0436609 -«0436609 -+0436609 ~e0436609 -«0436609
TOTAL TRIM CCNDITICN SLOPES AT LOAD POINTS
~+.0436609 +1331082 « 0554699 «0755199 .0738231
«0046529 -«0542514 ~+0404669 -.0031124 0133642
0248230 0224995 «0186951 «0137779 ~.0615084
«0079625 «0111000 «Q127531 «0132559 +0126468
-.0183140 -.(089998 ~«0021476 «0012953 .0050137
~.0866568 ~e 0458547 -e0260490 -.0171017 ~e0105445
«0020907 « 00235243 -.0961399 -+0585720 -+0374848
-.0105827 -.0069518 -.0039599 -.0018000 -.08083117
-.0255958 -.0219175 ~.0189672 -.0153701 -.0118612
-.0613408 -.0487982 ~+0435496 -.03T70947 -.0308534
~«0637506 -.0650822 —+0602126 ~+0542942 ~.0480599
-+0363429 -.0343914 ~«017€354 -.0369715 ~.0420562
~+0441703 —e 0444051 ~+0445780 ~e0446094 «0253262
—<.0436609 ~ 0436609 -.06436609 -.0436609 —+0436609

QDoT

0  0.000000
0.000000
0.000000

Q
0 003804
«672663
—e539630
-.000013
~+002242
-.183071

«0584697
«0223163
-.0091252

.0102982
+0064772
-.0049710
~+ 0236675
—+0639445
-«0093190
-.0292484
=.0432134
-.0430595
-.0255481
~e0436609

«0657693

-02G8076
-+0174436

«0110417

.0060814
-«0065365
-.0260449
-.0722898
-.0099250
-.0283111
-.0454076
-.0428395
-e0117544
~+0436609

MACH
0 0006716
-e018491
+003161

QooT
1 0.0000000
0.000000
0.000000
-0.000000
-0.000000
0.030000

«0391723
«0250962
-.0024986
-+0523926 -

.0073867
-.0015805
-«0175863 -
-.0418934 -
~e0979577 -
-.0266985 -
-.0397698 -
—+0435389 -
-«0370163 -

«0510243

«0247195
-.0048858
-.06884933 -

.0071688
-«0026051
=.0201491 -

-«.050501¢4¢ -

-.0844228 -
~.0269140 -
-.0415073 -
~e0634637 -
—«0343573 -

DYN PRESS
0.00000000
0.0000000
0.0000000

DELTA
«0031426
088980

~+049690
~+000485
-«013736
-e780820

.0218184
«0253127
- 0047684
+0241893
.0080739
0008318
«0126706
0302575
«0725046
.0228268
.0373008
0438973
« 0436609

« 0254630
+0260645
.0023824
«0334654
«0078379
«0000706
0140063
«0Q335301
«0872726
0230371
0383499
.0437361
«0437926

0.
0.
0.

ALTITUDE

3.48992E-08
5.80350E~-07

0.

59



APPENDIX - Continued

INPUT OATA CARDS - SAMPLE CASE 2

COLUNMN NuUMBER
C0G000C00111121111122222222223333333233444444444455555555556666666666T777T77T7TTT778
123456785C12245678901234567890123456789C1234567890123456785C01234567890123456789C

110110 12.7 .1 9922,.37 112.6618 .C0523 N
.0015622 .C24£630 .0667€C2 .C729176 .0678190C .0584583 ,0388353 .0199922
-.024€213 ~.CE74348 -.0162212 .0062563 .01705S1 .C224678 .0250616 .0253754
0235866 .C2C7655 .0144825 .CC93577 -.C410C27 -.LCS192)1 -.0027684 .0C43€69
.039C743 .C118738 .0133369 ,.C180953 .01724232 .0153694 =-.0533342 -.0245784
-.0143609 -.0055302 .0006991 .0057236€ .C0G6S75 .Cl71323 .0155188 .02C0882
-.08657622 -.C37C484 -.C161335 ~.0111876 -.0C34572 .C036071 .0101099 .0174297
.C2065C8 +C224772 -.0738853 =-.04264€7 -.0229943 -.0141310 ~.0049521 .CG37CEE o
0112772 .C203119 .030378S6 .0318917 -.07238209 -.0499947 -.0247094 -.01018¢66 J1g
.00636¢2 .CC70773 .C1431¢3 .0223143 .0304250 .0314286 =-.0737579 -.0450515
-.0258322 —.0121348 —.0C13252 ,00£5625 .Cl2920& .C166269 .0L93716 .0224362
-.02501CE -.C17540C —.0084&20 .C0055C6 .CC77CCT .C1l25598 .0238697 .0374243
«C393GET .C247754 .C2e7487 .€1928C4 .0206758 .C223097 .C246000 .02656)4
.0317445 .C4CS€L1  .0414466 - 0389605 .CB094S8 .C5C9308 ,0415179 .C380638

0404353 ,0429335 .C406843 .0415755 .04381(6 .C455071 <
c. 0. 0. o. c. 0. 0. 0.

0. 0. 0. c. c. a. c. 0.

o. 0. 0. c. c. 0. 0. a.

0. 0. 0. c. .0532 .459 0. 0.

c. 0. 0. 0. 0. 0. .3725 .734

C. 0. 0. c. c. c. 0. 0.

0. c. c. a. a. 0. 0. a. e

0. 0. .4627 .€26 c. c. 0. 0. f 6

c. c. 0. 0. .849 1.9 0. 0.

c. o. 0. 0. c. .2738 .758 .758

c. 0. 0. 0. c. 0. 0. 0.

0. 0. 0. 0. c. c. 0. 0.

c. 0. 0. a. c. 0. 0. 9.

0. 0. 0. c. c. c. < U Level 1

—¢3335342 .126B7S4 LCE7S68BC .CT6E654 .0741514 .0657412 .0509240 .C247CE8
»0013444 -.C564475 -.0362262 ~-.0021710 .0123€1C .C210751 .C247217 .C261119
.02485¢61 .(224076 .C1795%6 .C114259 -.C619C54 -.0175378 -.0049803 .2020224
«07274266 .C111179 .01285381 .CleB27S .J178E74 .Cl€2129 ~-.0700422 ~-.034C887
—+C134C6G -, CCESTF8F —,C011357 .C0354€65 .(G079648 .(C144903 .0138831 .0159459
~.0878€22 -.0466441 -.C256543 -.0148723 -.N0C€2754 .CCC5924 L,0073152 .0148CT)
.C1552C4 .0217157 -.094C488 -.C548035 -.2314223 -.C174116 ~.0091469 .00C5CE8 >€
«02754EC .01ES€57 .C270648 .G31G25¢ =-.C782116 -.(5988C1L -.0352143 -.0153127 jig,f
-.2035€6%1 .CC45208 .01C66G8 ,0189262 LO2E775S .0315315 =-.0615457 -.0£2C748
-.0324775 -.C15¢828 -.,0047259 ,CC3€6ECC .012882C .CL726E2 .0186121 .02210%8
=e02275C1 —.022€067 =.C137763 -.C046018 .004578C .7768240 .0172427 .033223¢6
.033587C .C369C10 .(366C56 .021C111 .LClS1CRl .02C7521 .0228941 .0255374
.02833C04 J(3E8$¢51 .C410€41 .C39906S .098E22E ,0629536 .0422116 .C3EgQ22¢8

+03F2€%2 ,C4134399 .C4328443 ,04125CE .0429CES .C448589 <

C. C. 0. 0. C. 0. 0. 0.

C. 0. 0. c. C. C. C. 0.

C. C. C. C. Q. ag. 0. [¢1%

G. C. 0. D 0822 «456 C. 0.

C. Ce. C. 0. G. 0. «3725 .734

0. C. 0. 0. C. 0. 0. 0.

g. g. O;e‘ Q. Ce 0. 0. 0. rsé’r
. . «4€27 .82€ C. c. Q. 0.

O. 3. 0. a. . 849 1.0 C. 0.

0. c. C. c. C. .2738 758 .158

0. Ca C. C. 0. C. 0. g.

C. C. 0. 0. Ca C. C. C.

0. C. O. C. 0. Q. . 0.

C. J. 0. 0. c. 0. <



106.718
-12.515
~26.611
-8.6841
1.2%6
3.547
~66.7¢1
-5T.7E6
=55.6€0
-55.62¢
-5€6.629
-85.014
~38.852
-52.148
121.237
~€4.421
~20.378
©=32.110
€.238
8.220
-£2.651
-24.3€8
-52.822
~537.5€84
—£4.EE4
-37.6€41
-87.3%%3
-31.176
1-G.£22
14725CC.
12352.S322Z
1)4C8.682
272.14C
S€zT.CTE
11161.30¢
&C2.22C
22C8.CEC
152€.755
1e45€.C17
17724187
§¢2.272
L454.355
717.%2¢
4EB.C4C
15€.54¢C
20Z2.010
£7.€319
€.0c0
€4.3E¢E
15356.£15
«55375°7
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=5.553
16.089
28.1387
-70.888
~51.638
~40,246
~36.200
-38.835
-83.703
-80.107
~B0.545
-82.907
-88.672
=97.940
5.165
22.691
34.188
~£5.273
-46.783
-36.066
-32.693
-35.896
~8l.08¢
~718.020
~79.1C7
-81.722
-87.557
-$7.2C3

7668.411
-566.222
1568.800
2€40.876
1553.850
2615.319
£64.260
2€S8.0CC
871.55¢
1€86.054
1125.448
779.323
810.895
€7.575
117.050
-11.100
127.410
€4.388

€4.264 €l.810 33.356 16.901
-6E.372 £5.C489 44,155 30.422
-41l.244% -£5.577 ~6%.514 4C.756
-21.250 -23.660 -46.069 ~5E.478

-6,223 -16.601 -30.48C ~41.,C59

-4.8592 -13.730 =22.569 =-31.407
~75.5%3 -14.613 -21.EC9 -29.,004
-£4.582 -72.177 ~79.373 ~-32.227
-€1.269 -66.ET7 -72.48¢ ~78.C54
-£3.962 -6T7.998 -72.035 ~76.C71
-69.252 -72.C75 -74.898 -77.722
-91.827 ~76.553 -78.944 -80.526
-6C.834 -92.816 =54.757 - =87.fl4
=92.3C6 94,465 =55.623 ~96.782

$8.029 74.820 51.£12 28,4C3
-€7.640 65.759 51.403 27.C47
-34,734 -49.090 -63.448 4€.620
-15.543 -27.675 ~4C.408 -52.841

-6,366 ~14.971 -2£.215 -36.17%

-.£25 -€.500 -18.366 -27.221
~71.557 -11.017 ~13.242 -2f.468
-€1.594 -68.819 =76.C44 ~3C.2F1
-5E.4177 -€4,122 -66.767 -715.413
~€1.671 -£5.159 -6G.846 -73.632
-€7.728 -7C.573 -73.418 -76.262
~50.486 ~-15.€90 -17.701 -79.711
~8S.764 -91.775 -93.785 -86.25C
~52.3E3 -53.£89 -64.1S56 =S6.C02
“4256CS516. 1. C.
50€2.20C0 3545.400 BS12.87¢€
11051.640 5265.812 78G¢%.2¢€0
7257.529 4890.585 G056.290
3729.C10 382.190 €l.C¢8
1£21.CZ0 1301.48¢ 128£.46C
2833,442 3190.£C6 c.CcCC
20il.224 942.250 -22.882
4428.,3228 248€.3¢€7 Z4l€.258
7C4.51¢C 24€.882 £5C.899
1183.848 9BE.TES §76.4328
1166.724 167.690 902.272
-72.07) 3ES.1C¢E 23¢.C80
0.000 T72.5C6 T71.€19
375.13C 72.122 E7.31C
3€l1.520 225.8¢0 49€.010
J.00) 112.950 14£.89C
SE.56% 2.417 £8.2¢E
42.469 42.4€9 C.000
0.00C0
2€13.82 31.5673 .C0C17465 ~,CCCO47S O,

-28.007
1.756
15.977
22.414
-62.217
-45.084
-43.395
~44.443
~51.854
-84.143
-83.358
-84.889
-89.831

-18.014
8.335
21.755
27.446
-57.388
-44.961
~39.,918
-41l.541
-49.410
-82.107
~8l.952
-83.732
-88.763

8564.712
586l.568
1867.500
-518.031
8894.700
2215.,237
1825.644
1652.776
1036.160
280,930
852.943
664.872
361.850
233.290
148.060
47.608
42.469
0.C00

-50.461
-1z.578
3.568
11.835
-72.796
-57.922
-50.591
-5C.C52
~55.890
-88.179
~8€.191
-8€.871
-9C.989

-41.223
-6.021
<222
l6.842
-67.9%2
-53.826
=47.143
~47.187
~52.497
-86.165
~84.796
-85.743
-86.570

N

ﬁ

J

]

>

>xf

P

& Level 1

Level 2

? Level 3

} Level &4

61
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PROGRAM OUTPUT - SAMPLE CASE 2

AEROELASTIC DERIVATIVES, M= 2.700, XC6= =9.823, W= 472500, QBAR= 596.62

ELASTIC AIRLCADS PER Q@ DUE TQ JIG SHAPE

5.810704 5.793022 6.8455€1 5.7475¢5 3.5£5016 .918621 =2.72216€6 =5.006404
-8.567500 -5.897203 3.40¢€742 4.046156 3.4£1013 2.809673 2.043070 «927896
007622 -.832394 -1.798315 -2.459552 «422105 3.613570 2.557279 2.324106
1.897848 1.281391 - E25758 «345853 -.361262 -.912634 -1.523217 2.295400
1.959128 1.577447 1.878833 1.560583 1.240003 1.062064 «561957 .198910
-3.131752 1.115842 1.8371C1 1.641616 1.710963 l.665462 1.469050 L.379527
1.223425 1.027146 -4.106022 «329446 1.4181¢5 1.337896 1.461160 1.625356
1.671620 1.688508 1.684915 1.422207 -4.430626 -+539993 1.087457 1.3331¢€5
1.357799 1.295€55 1.423311 1.565672 1.5¢7636 1.412448 ~4.307457 -.T781343
«332300 «8641£E4 1.052227 1.052051 1.0£2808 982056 1.030886 1.159961
~2.715483 -1.31325¢ -~ 440357 ».131023 .521116 «801604 1.052415 1.246255
1.1468631 .898452 -.279069 ~.954255 -+ 145754 ~.464117 -.201243 -.001218
«265685 -5862568 « 740627 « 795548 960463 299702 -.014005 -.211753
-.259594 -.229951 -.229331 ~.183912 -.123204 ~«056915

ELASTIC AIRLCADS PER G DUE TO ALPHA
181.747€55 117.0519715 112.8405687 127.273047 127.32(816 102.387782 92.614373 81.607987
53.749616 22.664056 204.221516 106.£€40154 88.363469 75.638748 67.436587 53.893921
48.112704 44.413387 34.523557 25.£612750 211.412819 112.278084 86.477548 71.1163¢3
59.323128 4E.2455E4 41.3541E6 28.882209 24,.5246(9 24.9£3513 208.707701 111.283724
83.712699 €4.€15888 51.245323 41.223431 34.472135 19.153164 17.554378 20.617842
198.645289 1C6.C6E429 1€.167912 55.925452 A432,213370 23.141160 27.31178% 18.638318
15.575241 15.795472 177.668525 94.736399 6E.6£2674 48.966157 37.180852 28,768145
22.431963 15.68E969 10.85¢547 11.909068 149.474245 79.907197 54.957269 41.110378
30.6€2899 £4.540629 19.251603 14.520721 11.273539 11.697674 116.586145 €3,242091
43.957051 21.674819 23.10£955 22.045206 19.8(4528 18.287747 16,364708 14.017691
69.523591 49,144325 35.974603 27.226424 21.220555 15.059433 10.061113 5. 605167
5.505273 T.8567C1 25.5540C1 32.743521 29.0€1866 24.630426 20.419141 16.976281
12.660722 1.583080 4.587620 3.011404 3.£22053 5.793406 T7.929713 9.911498
11.00€C76 1C. 865142 11.142255 10.682785 $.925126 9.048938

ELASTIC AIRLOADS PER Q@ DUE TO DELTA

-.036512 -.02CE77 -.015470 -.000235 .C22378 -1.4C05023 ~3.205715 ~64.672643
-2.995317 1.232063 -.041325 -.C01117 «059463 -.021189%9 -+204019 -1.111716
-2.062385 -2.961556 -4.5632%6 2.124872 +CEE3ES .068301 «035234 ~.220115

-.£643060 ~1.37€4(5 -2.512¢€45 ~5.643394 ~-2.382481 45.5643862 .073895 004073

~+145799 -.6107¢8 -1.232489 ~2.139722 ~3.4C0072 ~7.656791 23.26193) 41.913720

-.024€£56 -.262321 -.601959 -1.199788 ~2.014875 =3.534259 -4,908C71 -7.58%171
-3.671924 10.65€2°£3 ~.£€300€3 -.7887¢5 -1.31€599 -2.188441 -3.411634 -4.663785
-5.443156 ~5.7736€4 21.49C756 40.186445 ~2.472974 -1.959883 -2.237820 ~3.119007
-4,557511 -£,335221 -4.450549 -£.745119 41.282109 44.599598 -5.380092 -3.689807

-3.3148¢64 -2.3981¢€4 -4.257249 -4.577133 ~4.967545 7.598386 25.752840 26.242722
-6.250481 -4,53€4176 -3.56£472 -3.057682 ~2.615758 -2.610402 -2.470375 -2.312453
-1.841749 =.194833 -4.313958 -4.205368 ~2.£43032 -2.920926 =2.416751 ~2.023752
-1.632819 ~1.211¢€48 -1.105218 ~1.132324 ~1.€27002 -1.772055 -1.8378€0 -1.861547
~1.815626 -1.687032 -1.608774 -1.482138 ~1.326146 -1.206799

ELASTIC AIRLCACS PER € DUE TO ANy G

-2.5737%5 -1.58C32¢ -1.£95015 -.7598C6 «107229 20296836 2.920626 3.3276C8
2.947689 1.48¢455 -2.989642 -1.162037 -.515246 «023682 «615704 le 444497
1.684588 l.76£338 2.145542 1.907288 ~2.603851 -1.028039 -.348273 «24322¢

.810289 1.301227 1.5168¢64 1.8776C5 2.11638€3 1.85¢6195 ~1.975876 ~.T768129
~.158782 396574 .8536172 1.1624¢€3 1.3652¢%4 1.784550 1.886074 1.675CS0

-1.232475 ~+431047 .0519¢€3 519137 +8159C0 1.057363 1.218719 1.431338
1.416585 1.302411 ~.445881 -.047302 225487 «550347 « 764423 884001

928373 1.€16C15 1.62451¢C 1.006541 247051 «271121 «356211 503910
«£45570 «694601 «681C0E7 .675702 .£92556 « 725895 « 745428 «472464
«415244 392323 «435E54 «470529 «453432 «497904 «496201 .501350
«655369 «504723 «365586 «347474 » 302145 265311 «267939 227860
«244542 2853172 +429761 «441503 +379793 320990 274756 245237
»204232 .151471 +13805€ «1423C3 «174226 «187926 -1985C9 «202841

.167818 184113 .182560 «1718¢€7 .158509 «14£498
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FLEXIBLE SLOPE INCREMENTS AT LOAD POINTS DUE TC JIG SHAPE

0093265
«C006476
-.0005372
«0005720
«0014482
. 0003423
-.0109831
-.0097738
~+0104494
-.0131881
~.015C899
-.0290716
~«0269567
-.0263350

.00918¢2
.0007580
«00C7779
+00023€5
«0004625
.C0012810
.0113168
0117926
.C129421
0145815
.01580¢€1
0281724
292188
0264653

«0082758

«0C735CS
=.0007730
-.0004512
-.0007366
-.0003467
-.001€6547
~.0159548
-.0145660
=.0176375
~-02129C%
—-.0237654
-.0298155
-.0265132

0068154

.0064657
-.0003592
-.0030058
-.0015562
-.0012194
-.0020683
-.0172270
-.0162609
-.0186922
-.0224324
-.0241633
-.0293416
-.0256829

.0041498 0015830

+0053294 0039300

«0052643 -0043764
~+0049405 ~.0053916
~.0021212 -.0056999
-.0023196 -.0040738
~+ 0027845 -.0039609
~+C054048 ~.0059996
-.0157281 -.0200938
-.0202817 ~.0211958
~.0234134 ~.0243034
-.02%2019 -.0255808
-.02€3197 -.02656395
~-.0258345 ~+.0261660

FLEXIBLE SLCFE INCREMENTS AT LCAD POINTS DUE TC ALPHA

«2718150
~.1612471
~.1028083
-.0123659

« 0316665

«0511167
-.4854533
-.4856519
~+5475559
-.63€£5889
-~ 7659422

-1.1704522
=1.1736419
~1.2320485

FLEXIBLE SLCPE INCREMENTS AT LCAD POINTS

~.0002942
-.0192187
-.0106517
-.0034019
-.0007055

.0010480
-.(998058
~.083€C32
~.0772259
-.0904511
-.1225453
-.1019326
-.0903709
-.06852178

-1
-1
=1

«2€52585
«1637413
«151%2415
«CE4ELT2
«C21E5€8
.00771599
4917673
5569290
6000526
«653721¢
.7808528
.1212711
«2057¢€18
«3877344

.00026%4
«0168353
.017808€7
«.C074713
.CC34182
.0014968
1024402
.0804850
«C5B2£46
1027865
«12477€3
.1€62858
+CTEQ4ES
+C615235

«23554C7
2184813
-.1€06C34
-.12055%7
-.0548301
—+C5766€2
~+1076165
-.£386993
=+6366479
-.T75866€3
-.8272612
-.9742791
-1.3458548
-1.4177012

-.0003076
-.0002903
~ 0242425
-.0114313
-+00892€6
=.0056345
-.0047338
—.1336482
-.11214235
—«12207€7
~«1254661
-.123418$
-.0711083
~.C56€827

«2004067
1925376
~e2044741
~.2383490
-.16616C7
-.13672€1
-.1651017
-.€6€45427
-.6923714
-.7716118
-.8658580
-.57681178
=1.2218245
~1.3918812

-.0002935
-.0002683
-.0268412
-.C372757
~.C169CS8
-.0112731
-.0089856
~+1456426
-.1078841
=.1299327
-.12661C7
-.12104€3
-.0731299
-.05721¢€6

«1289749 0412762
«1565792 1185562
1823259 «1437793
-.22241€6 ~.3452587
~.2091656 =+3364940
-.2C13474 -.2938092
~.2438254 -.3176108
-.3111987 -+.3683608
-.745€5C8 =.7546954
-.7555206 -.8124320
-.8657523 -.9282906
~1.0145050 -1.0472356
-1.18786%5 =1.2101109
-1.41€1577 -1.4417986

DUE TC DELTA
-.CC02632 -.0012147
-.0001929 ~.0000675
.0C02151 .0010895
-.0657415 ~.0814037
-.C241130 -.0586673
-.0183115 -.0356909
-.0162055 =.0277846
~.0284544 ~.0341563
-.1632385 -.1675837
-.141€876 -+1505454%

~.1248482 -.1217907
~.11€95%0 =.1109565
-.(B8£4065 -.0852106
-.053C778 -.0496569

FLEXIBLE SLCFE INCREMENTS AT LOAD PCINTS ODUE TO AN, G

-.0268041
.0108165
.0055167
«00035€2

-.0029126

-.00160€1
.0172588
.0153452
0151451
«0154909
«01540690
.01C8188
«01147€3
. 0092655

0256856
«0112741
.C082¢€19
0043465
0002944
«CC02251
«01713¢€1
«Cl61E58
.0157920
.0157221
«C1l54449
«Cll56¢%¢E
«C094€45
.0C84688

=.0225443
-.0192221
.0103155
+0070338
«0C43538
«QC276CS
+004€172
.0161123
+0160051
«0158368
.0152302
«0140520
.0088746
.008C728

-.0180043
-.01686175
.0126788
.C110€50
.0074153
.0058058
0063574
0159463
.01575¢88
+0155771
+0145553
.0138967
.C052519
«0085677

-.01C7137 -.0035940
-.0137827 -.0100688
-.01281(C8 -.0113385
+C154848 .0170706
0053750 «0137153
+CCEl6B2 .0112828
.CC86204 .0108256

.01C4969 0115665
0154653 +0154811
«0153745 .0151743

.01468C8 0143669
.0128250 .0130663
.0110281 .0109195
.0082501 .0078779

=.0004448

«0018475

« 0033199

«0029265
-.0085141
~.0057783
~.0054903
-.0070136
-.0110115
-.0211937
-.0253222
-.0258463
-.0265513

-.1042503
0493260
«1042767
«1257243
-.4250158
-.3562284
-.3685685
-.4418872
~.5492655
~.8086727
-.9703982
-1.0876102
=1.2365246

-.0110868
-.0007577

.0011256

.0005580
-.0955201
~.0%524458
~.0420577
-.0456250
~.0690619
~«1565484
-.1184183
=.1048641
-.0806223

.0056305
-.0042747
-.0083431
-.0079015

.0175523

0132437

0124939

.0130912

«0149438

.0151385

«01391€6

«01252¢€5

«0106546

-1
-1
-1

«0004662
»0002913
.0021558
+0022681
-0090988

.0090879

«0077422
.0083952
0117441
0210664
.0282140
.0263332
0269314

«1480572
0323341
«0630070
+0817493
«4#429938
«4431237
«4308ST7
«4935266
.5885788
08043788
1254435
1276822
.2868478

«0173026
«0044752
0002690
+0007344
1065206
.0829878
«0629740
»0595292
.0761233
1566422
«1056200
.0980896
«07427¢4

0084406
.0012337
«0048901
«0056559
0186144
-0159840
«014266€3
0142618
0152722
.0151884
.0115150
.0120453
.0100214

63



ca
CN
CM

CA
CN
o]

CM ALPHA/CN ALPHA

ST
MA
DE
DE

64

LEAD FACTOR

TRIM V
«00475
«C7914
€.00000

CA =
CN =
cH =

CERIVA
JIG SHAFP

«014051
005452

STABIL

u
001677
-.060885
.018285
-.0C1728
-.C15037
287322

STATIC

ATIC MARGIN
NEUVER MARGIN
LTA/U

LTAZAN, G

TCTAL
~.002058%
~.0198535

.0236225

0063337
~.0143273
~.0647C82

.0027601
~.0090044
~.0240824
~.0566273
~.05€E£321
~.0351536
~.0435389
~.0433476

TOTAL
~.043£302
«0046302
.0248233
.0079563
~.0183161
~.C866681
0022373
~.0104473
~. 0254524
~.0611572
-.0635242
~.0359¢37
-.043€507
~.0433465
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= «55375
ALLES ( 2 ITERATICAS)
< ALPFA = +04E4GE PHI = C.0¢co0C
H DELTA = =-,COI151 ANy G = .93258F
Q THETA = «G48458 cL/2y = -000000
TIVE CCATRIBUTICAS
E - ALFFA DELTA Qc/2v AN, G QDoT PACH
-.0356468 .0012515 -.CC99517 .0001567 -.0012869 .0008278
1.115244 .02C705 +154%43 «010917 ~.032467 -.0311269
«C42187 -.016252 -.372356 =.0C7624 .001052 ~.0008%¢
1TY CERIVATIVES
LecT ALPHA ALPFA COT THETA Q QooT
< -.0006172 ~+0356468 -.589C383 -.GCCCa76 +5790866 ~.001286¢
-.042965 1.119244 =-41.03C6C8 -.000526 41.225150 ~.022467
.£30C27 043187 28.€6553¢2 .000367 -29.027718 «001052
«CCO095 .0C6120 «0C15€3 .CCacnN -.001930 .0C0199
-0C6€37 ~.172782 «13€749 .000Ca1 -.137397 .0C5012
+471844 «678637 9.721432 +0C5772 -9.847756 +01€£31
FARANETERS
= .C265E6
= =.C€1774
= =.(€3460
= «7€2541
= =-l.265¢€11
TRIM CCACITION SLOPES AT SLCPE POINTS
.0217¢48 .C653027 .07216C8 .C677€658 .05847C0 03391715
~.(64C678 -.01731C2 .0054710 .01€£357 .0222172 .025C557
.020€2€2 0164255 «01155¢€1 -.C4C7771 -.0051254 -.00250C5
.C117247 .01z8286 .0129417 .0118786 .0098395 ~.05240C2
~.CCE1G3E -.0C0B48C .0028211 +CCE42ES .0065721 0070841
~+.C367440 —.0204247 -.0143861 -.0C89509 -.0049122 -.0014923
+CC42165 -.0768635 -.0474647 -.C314577 -.0236140 -.0175042
-.CC5€6184 -.0034212 -.CCle856 -.0850557 -.0638657 -.0417912
-.020700C -.0174310 -.01381¢€0 -.0119256 -.0101637 -.0978100
~.C477CT9 —-.04188C1 -.0354738 -.02C5467 -.0292457 -.0272503
-.061283¢ -.05661C0 -.0504553 -.C4€1084 -.0429040 ~.0394450
-.033¢€€51 -.0c86370 -.04C0142 -.042¢5170 -.0427407 -.064322C7
-.C441£45 -.£442936 =-.0442990 +0CE€955 -.0252318 -.0367012
-.04334€0 -.0433572 -.0423564 -.04335€7 -.0433567
TRIM CCACITICN SLOPES AT LCAC PCINTS
.13313¢63 <05548€4 .0755267 .0738253 0657601 0510246
-.05427€2 -.040457¢ -.0021C56 .0122686 .02€8093 «0247193
.£225010 «0186945 .0137691 -.0€15112 -.0174440 -.0048862
.011C990 .0127458 .01228€4 .C1265C6 .0105862 -.0688587
-.C05C0CO -.0021438 .0013085 0050326 0061520 .00685&7
-+C45E625 -.C2€05Cs -.C170926 -.01C5223 -.0064905 -.0025338
.0036779 -.0561360 -.0585583 -.C274574 -.0256988 -.0200820
-.CC68051 -.0042518 -.0024812 -.0882575 -.0722216 -.0504121
-.0217248 -.0187572 -.0151476 -.0128261 -.0107558 -.0842833
-.04858¢€2 -.0432648 -.0368220 -.0305567 -.0283125 -.0274670
-.C€48090 -.05692¢64 -.05295871 -.04775¢€3 -.0450994 =.0411916
-.0340465 -.0173197 -.03¢665¢€64 -.04173¢€4 -.0425208 ~.04314£3
-.0440662 -.044238¢ ~e 0442742 «0256357 -.0114377 -.0340408
-.0432451 -.04334¢68 -.0433562 -.0423570 -.0433554

DYN PRESS
-.0000CC47
-.C000255

.000C174

DELTA ALTITUDE
«0012£15 1.32361E-08
.0207C5 7.23373E-07

-.018252 -4.91711€-07
-.00C163 2,28540E-08
-.003166 4.68681E-07
—+2868C3 ~7.7266BE-06

.0218680
.0253123
0047652
-.0241931
.0073536
0009690
-.0125537
-.0301311
-.0723314
-.0233828
-.0369537
-.04358C7
-.0433458

0254600
«0260€47
.0023758
-.0334707
0071206
.00018%4%
-.01390¢€1
—.03341¢€7
-.0871175
-.0235612
-.0380C85
-.0434177
-.0434761
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Program Listing

The source program listing is presented on the following pages. The listing for
subroutine MATRIX is not given, but its function can be performed by any standard rou-
tines for matrix multiplication and inversion. In the listing presented, any CALL MATRIX
statement having a first argument of 20 calls for multiplication of the matrix starting at
the address named in the fifth argument into the matrix starting at the address named in
the seventh argument, the results to be stored starting at the address named in the ninth
argument. Any CALL MATRIX statement having a first argument of 10 calls for inversion
of the matrix starting at the address named in the fifth argument, the inverted matrix to
be stored starting at the same address, and the determinant to be stored at the address
named in the seventh argument. The determinant is not used in the présent program,

The remaining arguments transmit instructions and dimensions required by subroutine

MATRIX,

65
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PROGRAM LISTING

PRCGRAM AEDERIV{INPUT,0UTPUT TAPES=INPUT,TAPE6=0UTPUT,TAPEL,TAPE2)AED
AED

TAPEl MUST CONTAIN THREE AERO IC MATRICES FOR MACH = AM, MACH = AED
AM+DM, AND MACH = AM-CM. EACH MATRIX HAS DIMENSIONS M*M AND IS AED
OF THE FORM SO THAT A(ROW,COL)*SLOPE(COL) = FORCE(ROW)/Qs TAPE AED
MUST BE WRITTEN WITH COLUMN INDEX ADVANCING MOST RAPIDLY AND NO AED
END FILE CODES BETWEEN MATRICES. AED
AED

TAPE2 MUST CONTAI'N TWO STRUCTURAL SLOPE IC MATRICES FOR SLOPES AT AED

PANEL SLOPE POINTS, AND SLOPES AT PANEL LOAD POINTS. EACH MATRIXAED
HAS DIMENSIGCNS M*M AND IS OF THE FORM SO THAT S{ROW.COL) AED
*FORCE(COL) = SLOPE(ROW)e TAPE MUST BE WRITTEN WITH COLUMN AED
INDEX ADVANCING MOST RAPIDLY AND NO END FILE CODE BETWEEN AED
MATRICES. AED
AED

AED

IFLEX = D FOR RIGID CASE (REQUEST TAPELl ONLY) AED
IFLEX = 1 FOR ELASTIC CASE (REQUEST TAPEL AND TAPE2) AED
LIST = 0 DELETES LISTING BELOW AED
LIST = 1 LISTS ELASTIC AIRLOAOS AND FLEXIBLE SLOPE INCREMENTS AED
DUE TO JIG SHAPE, ALPFA, DELTA AND AN, G PLUS TOTAL TRIM AED
CCNDITION SLOPES AED
LFT = 0 TRIMS WITH WINGS LEVEL AT THE INSTANT THAT FLIGHT PATH AED
IS LEVEL AED
LFT = 1 TRIMS IN CONSTANT ALTITUDE BANKED TURN IF LOAD FACTOR IS AED
GREATER THAN G/32.174 AED
NC = NUMBER OF CG LOCATICNS AED
NW = NUMBER OF AIRPLANE WEIGHTS FGOR EACH CG AED
NQ = NUMBER OF Q VALUES FOR EACH WEIGHT AED
NN = NUMBER OF LGAD FACTORS FOR EACH Q AED
CAF = INCREMENT IN AXIAL FORCE COEFFICIENT (SKIN FRICTION, ETC) AED
TO BE ADDED TO ThAT CALCULATED DUE TO SURFACE PRESSURES AED
XCG = X COORDINATE OF CG (FROM NOMINAL ORIGIN, X POSITIVE FORWARD}AED
AED

INPUT ARRAYS AED
TSR(M,1) = SLOPES AT SLOPE POINTS DUE TC TWIST AND CAMBER AED
TSR(My3) = SLOPES AT SLOPE POINTS DUE TO UNIT DELTA {(RAD) AED
TLRJ(M) = SLOPES AT LOAD POINTS DUE TO TWIST AND CAMBER AED
TLRC (M) = SLOPES AT LCAD POINTS DUE TO UNIT DELTA (RAD) AED
XSC{(M) = X COORDINATE OF SLOPE POINTS (FROM NOMINAL ORIGIN, AED
X POSITIVE FORWARD) AED
XLC(M) = X COORDINATE GF LOAD POINTS AED
FI(My1) = WEIGHTS ACTING AT PANEL LOAD POINTS - AED
FL(NN) = LOAD FACTOR AED
LOAD FACTOR IS NORMAL TO FLIGHT PATH, IN SEA LEVEL G UNITS AED
ANy G IS NORMAL TO THE XY PLANE OF BODY AXES, IN SEA LEVEL G UNITSAED
BODY AXES ARE FIXED TO A MATERIAL POINT AT THE REFERENCE POINT AED
OF THE STRUCTURAL SLOPE MATRIX AED
AED

AED

COMMCN A(120,127),5(12%412C) 9 TSR(12C,T)sFRA(12047)4XSI(120),XLO(12AED
109),XS(129) 4 XL{220),FIC(12D,2)FL(25),FEA(L120+9),FIA(120,43),CN(8B),CMAED

2(8), TLE(120+49)4CA(B),TLRJ{12D),TLRD(120),SCA{9)4SCN(9),SCM(9),4SXIFAED
3149SZ{S)sSM(9) AED
REAC (5954) IFLEX+LIST,LFT,M,NC,AM,DM,SREF,CBAR,CAF AED
DO 1 K=143,2 AED
READ (5,55) (TSR(I,K}yI=14M) AED
REAC (5,455) (TLRJI(I),I=1,M) AED

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
2710
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
519
520
539
540
550
560
570
580
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REAC (5,55) (TLRD(I),I=1,M)
REWIND 1

READ (1) ((AlIsJ1,4J=1sM)41=1,M)
IR=1

DO 2 I=1,M

TSR{I,2)=1,

COMPUTE RIGID LOACS DUE TO JIG SHAPE, ALPHA AND DELTA

DO 3 K=1,3 '

CALL MATRIX (20,MyMy1,A5120,TSR{14K),120,FRA(1,K),120)
CONTINUE

REAC (5955) (XSQ(I)eI=1,M)

READ (5,55) (XLG(I)e1=1,M)

SRC2=SREF/2.

DO 53 IC=1,NC

COMPUTE RIGID LOACS DUE 7O QCr2v

READ (5,56} NW,XCG

DO 4 I=1,M

XS{1)=XSO(I}-XCG
XL{I)=XLO(I)-XCG
TSR(I,4)==XS(1}*2./CRBAR

If (IR.EQ.1) GO TO 5

REWIND 1

READ (1) ((A(I+J)yd=1yM),I=1,4M)
IR=1

CALL MATRIX (2Co+MyMy19A9s12D+TSR{L194)+1204FRA{1,41),120)
DO £2 I[W=1l,NW

READ (5456} NQoWsYIsY1l,Y2

ESTABLISH INERTIAL LOACS DUE TO LOAD FACTOR AND QDOT

IF (IFLEX.EQ.?) GO TO 7

REALC (5457) (FI(I41)41=1,M)

D0 6 I=1,M

FI(LI,1)==-FI{1I,1)
FI(Io2)=FI(I1)%XL(1)}/22.174

DO 51 1Q=1,NQ

READ (5456) NN4QsV+GsRHC,RHOH,AH
READ (5455) (FL{I)sI=14NN)

WRITE (6458) AMyXCGoW»Q

READ BASIC A AND S MATRICES

IF (IR.EQ.1) GO TO 8

REWIND 1

READ (1) ({AlL+d)yJd=1sM)yI=1,M)
IF (IFLEX.EQ.D)} GO YO 13

REWIND 2

READ (2) ((S(I4d)ed=leM)sI=1,M)

FIND AIR LOADS DUE TO INERTIAL DISTORTION

DO 9 KI=1,2

K=KI+4

CALL MATRIX (204MyMy19S2120,FI(14KI)412C,TSR{1,K)},120)
CALL MATRIX (20,MyMp1,A,120,TSR{1+K)120,FRA(1,K),120)

COMPUTE BASIC AERCELASTIC CORRECTION MATRIX

AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED
AED

590
600
619
620
630
640
650
660
673
680
690
700
712
T20
730
740
750
760
170
780
790
800
810
820
830
840
850
860
870
880
899
900
9le
920
930
940
950
960
970
980
990

AED1 00O
AED1010
AED1020
AED1030
AED10N4N
AED1050
AED106D
AED10T70
AED1080
AED1090C
AED1100
AED1110
AED1120
AED1130
AED1140
AED1150
AED1160
AED1170
AED1180
AED1190
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APPENDIX - Continued

CALL MATRIX (20D4MyMyM,A4120,5,120,A,120)
DO 10 J=1lsM

D0 1C I=1l.M

A(I4d)=-Q*A(1,J)

IF (1.EC.J) A{I,J)=A(I,J)¢1.

CONTINUE

CALL MATRIX (10,M,My2,A,12Q,DETERM)

APPLY AEROELASTIC CORRECTICN TO FIRST SIX SETS OF AIR LOADS

DO 11 K=1,6
CALL MATRIX (20+MsMy1,A,120,FRA(1,K},12C,FEA(1,K),12C)

SUM AIR AND INERTIAL LOADS FOR INERTIAL LOAD SOURCES

DO 12 KI=1,2
K=KI+4

00 12 I=1sM
FIA(IKI)=FEA(I,K)+FI(I,KI}/Q
K1=6 '

GO TO 16

DO 15 I=1,M

DO 14 K=54+6
TSR{I,K1=0,
FRA(I+K)=0.

00 15 K=1,6
FEA(I,K)=FRA(I,K)
CN(5)=C.

CN(6)=0.

CM({S5)=C.

CM(6)=0.

K1l=4

DO 18 K=1,K1

COMPUTE CN AND CM DUE TO FIRST SIX LOAD SOURCES

CN(K}=C.

CM(K}=0.

DO 17 I=1.M
CN(K)}=CN{K)+FEA(L,K)
CMIK)=CM(K)+FEA( LK) *XL(I)
CN(K)=CN(K)/SRG2
CM(K)=CM{K)/(SRO2*CBAR}

IR=0

If (LIST.EQ.C) GO TO 19
WRITE (6,59) (FEA(I,1),I=1,M)
WRITE (6:60) (FEA{L42),I=1,M)
WRITE (6,961) (FEA(I43),I=1,M)
IF (IFLEX.NE.O) WRITE (6,62) (FEA(I,5),1=1,M)
D3 S0 IN=1,NN

CCMPUTE TRIM CONDIVIONS

AED1200
AED1210
AED1220
AED1230
AED1240
AED1250
AED126C
AED1270
AED1280
AED1290
AED1300
AED1310
AED1320¢
AED1330
AED1340
AED1350
AED1360
AED1370
AED1380
AED1390
AED1400
AED1410
AED1420
AED1430
AED1440
AED1450
AED1460
AED1470
AED1480
AED1490
AED1500
AED1510
AED1520
AED1530
AED1540
AED1550
AED1560
AED1570
AED1580
AED1590
AED1600
AED1610
AED1620
AED1630
AED1640
AED1650
AED1660
AED1670
AED1680
AED1690
AED1700
AED1710
AED1720
AED1730

CALL TRIM (CNyCMyW,FLUIN)JLFT,QySREF,CBARyV4GyYI+Y1lsY2,AT,DT,ANT,CAEDL1T740

INTyCMToQT+PRyPHI, T,ITER)
IF (ITER.GE.100) GO TOD 49

COMPUTE TRIM SETS OF RIGID SLOPES, RIGID AIR LOADS AND ELASTIC

AIR LOADS

AED1750
AED1760
AED1770
AED1780
AED1790
AED1800
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24

28

APPENDIX — Continued

D0 20 I=1.M

AED1810

TSRUI7)=TSR(I 1) +AT+DT*TSRII,3)+QT*TSR{I,4) +ANT*TSR(1,5)-PR*TSR{IAED1820

1,6)

AED1830

FRACEyTI=FRA(I,1)+AT*FRA(1,2)+DT*FRA(I,3)4QT*FRA(I,4)+ANT*FRA( [, 5)AED1840

1-PR*¥FRA{I,6)

AED1850

FEA(L9)=FEA(I L) +AT*FEA(I,2)+DT*FEA(TI+31+QT*FEA(1,4)+ANT*FEA(I,5}AED1860

1-PR*FEA(1,6)

IF (IFLEX.EQ.0) GC TO 25

DO 21 I=1,M

FIAC(I 3)=FEALI,9)+(ANT*FI{I,1)-PR*FI(1,2))/Q

CORRECT TRIM RIGID AIRLOADS FOR AEROELASTICITY AT HIGHER Q

QP=1,.05%*Q

REWINC 1

READ (1) ((A(I40)4d=1yM),1=1,M)

CALL MATRIX (20,MyMyM9»A,120,5,120,A,120)
DO 22 J=1yM

DO 22 I=1,M

Al L, J)=-QP%*A(L,4)

IF (1.EQed) A(Iyd)=A(I,J)+1,

CONTINUE

CALL MATRIX (l10,M,My2,A,120,DETERM)

CALL MATREX (2D0,MsMy1,A,120,FRA(1+7),120,FEA(1,8),120)

CORRECT TRIM RIGIC AIRLOADS FOR AEROELASTICITY AT LOWER Q

QP=,95%Q

REWIND 1

REAG (1) ((A(14J)4d=19M),sI=1,M)

CALL MATRIX (204M,M,M,A,120,5,120,A,120)
DO 23 J=1,M

DO 23 I=1,M

A(T,3)=-QP*A(1,])

[F (I.EQC.J) A(I43)=A(1,J)+1,

CONTINUE

CALL MATRIX (10,MyMy2,A,120,DETERM)

CALL MATRIX (204M4My1,A,120,FRA(L,7)+120,FEA(L,T7),127)

COMPUTE ELASTIC AIRLOACS DUE TO Q

DO 24 I=1,M
FEA(L+8)=(FEA(I,B)-FEA(I,7))/(e1%Q)
GO 10 27

DO 26 [=1,M

FEA(I,8)=0C.

USING TRIM RIGID SLOPES, COMPUTE RIGID AND ELASVIC AIR LOADS
AT HIGHER MACH

READ (1) ((A(143)4J=1yM)yl=1,M)

CALL MATRIX (204MyMy19Ay120,TSR(1,7)+120,FEALL,7),120)
IF (IFLEX.EQ.C) GO TO 29

CALL MATRIX (20,M,My,M,A,120,5,12C,A,120)

DO 28 J=1,M

D0 28 I=1,M

A(T4J)==Q*%A(1,J)

IF (1.EQ.d) A(I,d)=A(1,d)+1.

CONTINUE

CALL MATRIX (1Qy,M,M,2,4,127,DETERM).

CALL MATRIX (20,MyMy1,A,120,FEA(L,7),12C,FEA(L,7),1270)

AED1870
AED1880
AED1890
AED1900
AED1910
AED1920
AED1930
AED1940
AED1950
AED1960
AED1970
AED1980
AED1990
AED2000
AED201C
AED2020
AED2030
AED2040
AED2050
AED2060
AED207ND
AED298J
AED2090
AED2100
AED2110
AED2120
AED21390
AED2140
AED2150
AED2160
AED2171
AED2180
AED219n
AED2200
AED2219
AED2227
AED2230
AED2240
AED2250
AED2260
AED2270
AED228N
AED2299
AED2300
AED2310
AED2320
AED2330
AED2340
AED2350
AED2360
AED2370
AED2380
AED2390
AED2400
AED2410
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41

APPENDIX -~ Continued

"USING TRIM RIGID SLOPES, COMPUTE RIGID AND ELASTIC AIR LOADS

AT LOWER MACH

READ (1) ((AlI3)9d=1yM)yI=1,M)

CALL MATRIX (20,MyMy14A,120,TSR{1+7),120,TLE(1,1),120)
IF (IFLEX.EQ.O0) GO TO 31

CALL MATRIX (20,4MMyM,A,120,5,120,A,120)

00 30 J=1,M

DO 30 I=1,M

AlIyd)=-Q¥A(I,J]}

IF (1.EQed} A(I,J)=A(I,J)+],

CONTINUE

CALL MATRIX (10yMsM,2,A,120,DETERM)

CALL MATRIX (20 yMoMy14A9120,TLE(L91),1204TLE(191),120)

COMPUTE ELASTIC AIRLOAOS OUE TO MACH

D0 32 I=1,M
FEA(IyTI=U{FEALL,T)-TLE(I,1))/(2.%DM)

FIND CN AND CM DUE TO ¢ AND MACH

D0 34 K=T7,8

CN(K)=0.

CM(K)=C.

DO 33 [=1,M
CN(K)=CN(KI+FEA(I,4K)
CM(K)=CM(KI+FEA(T 4K} *XL(I}
CN(K)=CN(K)/SR0O2
CM(K)=CM(K)/(SROZ2*CBAR)

IF (IFLEX.EQ.O0) GO TO 26

COMPUTE TRIM CONDITION SLOPES AT SLOPE PCINTS

CALL MATRIX (204M,My14S5,120,FIA(1+3),120,TLE(L1,9),120)
DO 35 I=1,M

TSR{Is7I=TLE(Ly9)*Q+TSR{I,1)+DVT*TSR(I,3)

GO 10 39

DO 37 I=1,M

TSR{I 7¥=TSR{I,1)+DT*TSR(],3)

DO 38 K=1,9

DO 38 I=1,M

TLE{I+K)=0,

GO TO 43

COMPLTE SLOPES AT LOAD POINTS FOR ALL LOAD SQURCES

REAC (2) ({(S({Isd)J=1lyM)yI=1,M)

DO 40 K=1,8

IF (KeEQe5.0R.K.EQe6) GO TO 4D

CALL MATRIX (204MoeMy1lsSe120,FEA(L1yK)9120oTLE(1,K),1201})
CONTINUE

DO 41 K=5,7

K1=K=4

L=K

IF (K.EQ.7) L=9

CALL MATRIX (20,MsMy1l9S,1204FIACL,K1)}4122,TLE(1sL},120)
CALL MATRIX (204MyM,1,S5,120,FEA(1+9)+120,FIA(L,3),120])
DO 42 K=1,9

DO 42 I=1,M

AED2420
AED2430
AED2440
AED2450
AED2460
AED2470
AED2480
AED2490

-AED2500

AED2510
AED2520
AED2530
AED2540
AED2550
AED2560
AED2570
AED2580
AED2590
AED2600
AED2610
AED2620
AED2630
AED2640
AED2650
AED2660
AED26T0
AED2680
AED2690
AED2700
AED2710
AED2720
AED2730
AED2740
AED2750
AED2760
AED2770
AED2780
AED2790
AED2800
AED2810
AED2820
AED2830
AED2840
AED2850
AED2860
AED2870
AED2880
AED2890
AED2900
AED2910
AED2920
AED2930
AED2940
AED2950
AED2960
AED2970
AED2980
AED2990
AED3000
AED301C
AED3020
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APPENDIX — Continued

TLE(IK)=TLE(I,K)*Q

IF (K.NE.8) GO TO 42
TLE(IL,8)=TLE(I,8)+FIA(I,3])

CONTINUE

IF (IFLEX.EQ.0.OR.LIST.EQ.3) GO TO 43
IF (IN.NE.1) GO TO 43

WRITE (6463) (TLEUI,1),1=1,M}

WRITE (6464) (TLE(I+2)4I=14M)

WRITE (6465) (TLE(I+3),1=1,M)

WRITE (69661 (TLEUI+5)4I=14M)

COMPUTE AXIAL FORCE COEFFICIENT AND DERIVATIVES

CAT=0.

D3 44 I=14M

TLE(I#3)=TLEL1,3)+TLROLI)

TLE(I 9 )=TLE(I+9)+TLRI(I)+DT*TLRD( I}
CAT=CATH+(TLE(I+9)*FEA(I+9))/SRO2

D0 46 K=2,8

CA(K)=D.

DO 45 I=1.M

CA(K)=CA(K)+(TLE(L,9)*FEA(I K)+TLE(I,K)*FEA(I,9))/SR0O2
CONTINUE

CAT=CAT+CAF

WRITE (6467) FLIIN)

WRITE (6468) ITERSCAT,AT+PHI+CNT,DToANT,CMT,T,QT
WRITE (6469) (CA(K}K=248)4CNsCM

COMPUTE COMBINED STABILITY DERIVATIVES

FN=2.*V*Vv/(32,174*%CBAR)
vOG=v/32.174

CSA=CCS(AT)

SNA=SIN(AT)

ST=SIN(T)

CP=COS(PHI)
SCA(L)=FN*QT*CSA*CA(S) +AM*CA(T)+2.*Q*CA(8)
SCA{L)=FN*QT*CSAXCN(5) +AMKXCN(T)+2.*Q*CN(8)
SCM{1)=FN¥QT*CSA*XCM(5)+AM*CM{ T 142, *Q*CM(8)
SCA(2)=~-VOG*SNA*CA(5)
SCN{2)=-VOG*SNAXCN(5)
SCM(2)=-VOG*SNA*CM(5)
SCAL(3)=CA(2)-FN*QT*SNA*CA(S5)
SCN{3)=CN(2)-FN*QT*SNA*CN(5)
SCM{3)=CM(2)-FN*QT*SNAR®CM(5)
SCA(4)=—-FN*CSA*CA (5)
SCN(4)=—FN*CSA*CN(5)
SCF(4)=-FN*CSA*CM(5)
SCA(5)=-ST*CP*CA(5)*G/22.174
SCN(5)=-ST*(CP*CN(5)*G/32.174
SCM(5)=-ST*CPECM(5)%*G/32.174
SCA(6)=CA(4)+FN*CSA*CA(5)
SCN(6}=CN(4)+FN*CSA*CN(5)
SCHM{6)=CM{G)+FN*CSA*CM({S)
SCA(7)=CA(6)

SCN(7)=CNL(6)

SCHMETI=CM(6)

SCA(8)=CA(3)

SCN(8)=CN(3)

SCH{B)=CM(3)
SCA(9)=Q*RHOH*CA(B)~AM*AH*CA(7)

AED3903D
AED3N40
AED3050
AED3060
AED3070
AED3080
AED3090
AED3100
AED3110
AED3120
AED3130
AED3140
AED3150
AED3160
AED3170
AED3180
AED3190
AED3200
AED3210
AED3220
AED3230
AED3240
AED3250
AED3260
AED3270
AED3287
AED3290
AED3300
AED3310
AED3320
AED3330
AED3340
AED3350
AED3360
AED3370
AED3380
AED3390
AED3400
AED3410
AED3420
AED3430
AED3440
AED3450
AED3460
AED3470
AED3480
AED3490
AED3500
AED3510
AED3520
AED3530
AED3540
AED3550
AED3560
AED3570
AED3580
AED3590
AED3600
AED3610
AED3620
AED3630
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APPENDIX — Continued

SCN{9)=Q*RHOH*CN{B)-AM*AH*CN(7)
SCH{9)=Q%RHOH*CM(B)—AM*AH*CM( T)
QM=32.174*Q*SREF/ (W¥V)
QI=Q*SREF*CBAR/YI

SX{1)=-QM* (SCA(1)+2,*CAT)
SZ(1)==QM*(SCN(1)+2,.*CNT)
SM(1)=QI*(SCM{1}+2.%CMT)

DO 47 K=2,8

SX(K)=-CM*SCA(K)
SZ(K)==CMESCN(K)
SMIK}=QI*SCM(K]}

DO 48 K=446,2
SX{K)=SX{K})*CBAR/(2.*V)
SZ(K)=SZ(K)*CBAR/ (2.*V)
SM{K)=SMIK)*CBAR/ (2.%*V)
SX(9)=-CMX(SCA(9)+RHOH*CAT)
SZ{9)=-CM*(SCN(9) +RHOH*CNT)
SM(9)=QI*(SCM(F)«RHOR*CMT)
WRITE (6470) SCAySCN,SCMySX,SZ,5M

COMPUTE STATIC PARAMETERS

CMCN=SCM(3)/SCN(3)

CMNU=CMCN*T1.+SCNI(1) 7(2.*%CNT))=-SCM(1)/(2.*%CNT)

B=32,174*RHO*SREF*CBAR/(&e*W)
CMNN=CMCN* (1.-B*SCN(6) ) +B*SCM(6)

DU=2 ¢ *CNT*CMNU/ (SCM( 8)-CMCN*SCN(8))
DA=—W¥CMNN/{ Q¥*SREF*{SCM(8)-CMCN*SCN(8}))}

WRITE (6,711 CMCN,CMNU,CMNN,DU,DA
If (LIST.EQ.C) GO TO 50
WRITE (6472} (TSR(UI47)yI=1,4M)
WRITE (6473) (TLE(I49),41I=1,M)
GO TG 50

WRITE (6574) CNyCM

CONTINUE

CONTINUE

CONTINUE

CONTINUE

STOP

FORMAT (311,213,5F10.0)
FORMAT (8F10.0)

FORMAT (13,6F10.0)
FORMAT (6F12.0)

AED3640
AED3650
AED3660
AED3670
AED3680
AED3690
AED3T700
AED371C
AED3720
AED3730
AED3740
AED3750
AED3760
AED3770
AED3780
AED3790
AED3800
AED381N
AED3820
AED3830
AED3840(
AED3850
AED3860
AED38B70
AED3880
AED3890
AED3900
AED3910
AED3920
AED3930
AED3940
AED3950
AED3960
AED3970
AED3980
AED3990
AED4000
AED4010
AED4020
AED4030
AED4C40
AED4050
AED4060
AED4OT0

FORMAT (1H195X¢27HAEROELASTIC DERIVATIVES, M=,f6.346Hy XCG=,F8,3,4AED4080

1H, =9F9.,0,7TH, QBAR=,F8,2)

AED40O9D

FORMAT (//10X,39HELASTIC AIRLOADS PER Q DUE TO JIG SHAPE/(1X,8F12.AED4100

161)

FORMAT (//10X,35HELASTIC AIRLOADS PER Q

FORMAT (//10X,35HELASTIC AIRLOADS PER Q DUE TO AN,

LAED4110

DUE TO ALPHA/(1X,8F12.6)) AED4120
FORMAT (//10X,35HELASTIC AIRLOADS PER Q DUE TO DELTA/(1X,8F12.6)} AED4130

FORMAT (//10X,57THFLEXIBLE SLOPE INCREMENTS AT LOAD POINTS

116G SHAPE/(1X8F12.7))

FORMAT (//10X,53HFLEXIELE SLOPE INCREMENTS AT LOAD POINTS

1LPHA/(1X,8F12.7))

FORMAT (//710X+53HFLEXTBLE SLOPE INCREMENTS AT LOAD POINTS

LELTA/(1X,8F12.7))

FORMAT (//10X,53HFLEXIBLE SLOPE INCREMENTS AT LOAD POINTS

INy G/7{1X48F12.7}))

FORMAT (//5X+s13HLOAD FACTOR =,4F9.5)

FORMAT (/10X+14HTRIM VALUES (,I3,12H ITERATIONS)/3X,4HCA

G/{1X48F12.6)) AED4140

DUE TO JAED4150
AED4160
DUE TO AAED4170
AED4180
DUE TO O0OAED4190
AED4200
DUE TO AAED4210
AED4220
AED4230
=4F1l0.64AED4240
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13Xy THALPHA =,4F10.6493X, THPHI =9Fl0.6/3X94HCN =yF1046,3X,7THDELTA =AED4250
29F1Ge692XyTHANy G =9 FlU46/3X34HCM =yF1Da643X, THTHETA =,F10.,6,43X, THAED4260
3QC/2V =,4F1T.6) AED4270

FORMAT (/10X,24HDERIVATIVE CONTRIBUTIONS/8X,9HJIG SHAPE ,5X,5HALPHAAED4280
ly7XySHDELTA»TX45HQC/2VsTX95HANy Gy 8X,y4HQDOT,8Xy4HMACH, 5X,9HDYN PREAED4290
25573k CAyF26e7+5F12.T9yF134.8/4H CN y7F12e€+F13,7/4H CM ,TF1246,F134,AED4300
37) AED4310

FORMAT (/10X,21HSTABILITY DERIVATIVES/12X,1HU,12X,4HUDOT,7X,5HALPHAED4320
1A, 5%, SHALPHA DOT ¢5X9y5HTHETAy9X¢1HQy10X,4HQADOT»TX 9 SHOELTA,6Xy BHALTIAED4330
2TUDE/5H CA  +8F12.7,E12.5/4H CN 48F12.6,E13.5/4H CM ,8F12.6,E13.5/AED4340

34H X 58F12.69E13.5/4H 7 +8F12.6,E13.5/4H M ,8F12.6,E13,.5) AED4350
FORMAT (/10X,17HSTATIC PARAMETERS/2CH CM ALPHA/CN ALPHA =,F10.6/14AED4360
1H STATIC MARGINy5Xys1H=,F10e6/20H MANEUVER MARGIN =yF1C.6/8H DELTAED4370
2A/U911Xy1H=4yF10.6/12H CELTA/AN, Gy TXy1H=4F1l0.6) AED4380
FORMAT (//10X4y43HTOTAL TRIM CONDITION SLOPES AT SLOPE POINTS/{1X,8AED439D
1F12.7)) AED4400
FORMAT (//10X,42HTOTAL TRIM CONDITION SLCPES AT LOAD POINTS/(1X,8FAED4410
112.7)) : AED4420
FORMAT (//5Xs14HUNABLE TO TRIM/3X,3HCN=¢B8BF12,6/3X,3HCM=,8F12.6) AED4430
END AED4440-

73
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APPENDIX — Continued

SUBROUTINE TRIM ({CNyCMyWoFLyLFT9QeSsCaV2GeY1Y1,¥Y2,AL4DELyAN,CNT,CTRM

IMT4QF s PR PHI»T,I1)

DIMENSICN CN(8), CM(B)
WOQS=w/(Q*S)

G0GO0=G/32.174
A=CM(2)/CM(3)~CN(2)/CN(3)

8= (WOQS-CN(5) ) /CN(3)+CM(5)/CM(3)
IF {(LFY.GE+.1.AND.FL.GT.GOGO) GO YO 3
QF={32,1T74*%FL~G)*C/(2,*V*V)
D=(CN(L1)+QF*CN{4) )/CN(I)~{CMIL)+QF*CM(4) }/CM(3)
AL1=(D~-FL%B) /A

DO 1 I=1,100

I1=1

AN=FL*COS(ALL1)

AL=(D-AN*B}/A

IF (ABS(AL-AL1).LE..0000005) GO TO 2
ALl=AL

CONTINUE

AN=FL*CCS(AL)
DEL=(~CM(1)-AL*CM(2)-QF*CM{4)-AN*CM(5))/CM(3)
CNT=WOQS*AN

CMT=0.

pR=°.

PHI=0Q.

T=AL

RETURN

FW=HOQS*GOGO

FI=YI/(Q*S*C)

Fl=FI*Y1l

F2=F1x*Y2

AL1=0.

TT=0.

CT=1.

ST=0.

CAa=1,

SA=0.

=0

CP=GOGC/FL
QV=FL/GCGO-CT*CP*CA-ST*SA
Ql=QV*G/V.

QF=Q1*C/(2.%V)

QP=QV*CA/(2.%CT)
CP=SQRT(14~QVXTT*SA/CT+QP*QP})-QP
IF (CP-1.) £,5,5

R=Ce

P=C.

SP=0,

GO TO 7

SP=SQRT(1.-CP*CP)

P=-Q1*TT/SP

R=Q1l*CpP/SP

AN=GOGO*(CT*CP+QV*CA)

PR=P#R

CMT=F2%(P*P-R*R)-F1%¥PR

IF (I.LY.D) GO TO 9
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TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM

D=(CMT-CM{1)-QF*CM{4)+PR¥CM[6) ) /CM(3)+{CN{1)+QF*CN(4)}—-PR:CN(6))/CNTRM

1(3)

AL=(D-AN*B) /A
CA=COS(AL)
SA=SINCAL)
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APPENDIX - Concluded

TT=SA*CP/CA
T=ATAN2(SA*CP,CA)
CT=Ccos(m
ST=SIN(T)
IF (ABS(AL~-AL1).LE..OC00095) GO TO 8
IF (1.GE.100) GO 7O 8
I=1+1
I1=1
AL1=AL
GO TO 4
=-1
GO TO 4
CNT=WCQS*AN
DEL=(CMT-CM(1)-AL*CM(2)-QF*CM{4)-AN*¥CM(5)+PR*CM(6))/CM(3)
PHI=ATAN2(SP,CP) -
RETURN
END
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Figure 19.- Comparison of the characteristic roots calculated by using the present formulation with those calculated
by using an indirect formulation. Elastic airplane; c.g. at 0.41c; uniform atmosphere.
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